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Abstract

State-of-the-art reinforcement learning (RL) algorithms typically use random sam-
pling (e.g., e-greedy) for exploration, but this method fails in hard exploration tasks
like Montezuma’s Revenge. To address the challenge of exploration, prior works
incentivize the agent to visit novel states using an exploration bonus (also called
an intrinsic reward or curiosity). Such methods can lead to excellent results on
hard exploration tasks but can suffer from intrinsic reward bias and underperform
when compared to an agent trained using only task rewards. This performance de-
crease occurs when an agent seeks out intrinsic rewards and performs unnecessary
exploration even when sufficient task reward is available. This inconsistency in
performance across tasks prevents the widespread use of intrinsic rewards with RL
algorithms. We propose a principled constrained policy optimization procedure
that automatically tunes the importance of the intrinsic reward: it suppresses the
intrinsic reward when exploration is unnecessary and increases it when exploration
is required. This results in superior exploration that does not require manual tuning
to balance the intrinsic reward against the task reward. Consistent performance
gains across sixty-one ATARI games validate our claim. The code is available at
https://github.com/Improbable-AI/eipo.

1 Introduction

The goal of reinforcement learning (RL) [1] is to find a mapping from states to actions (i.e., a
policy) that maximizes reward. At every learning iteration, an agent is faced with a question: has the
maximum possible reward been achieved? In many practical problems, the maximum achievable
reward is unknown. Even when the maximum achievable reward is known, if the current policy
is sub-optimal then the agent is faced with another question: would spending time improving its
current strategy lead to higher rewards (exploitation), or should it attempt a different strategy in
the hope of discovering potentially higher reward (exploration)? Pre-mature exploitation is akin to
getting stuck in a local-optima and precludes the agent from exploring. Too much exploration on the
other hand can be distracting, and prevent the agent from perfecting a good strategy. Resolving the
exploration-exploitation dilemma [1] is therefore essential for data/time efficient policy learning.

In simple decision making problems where actions do not affect the state (e.g. bandits or contextual
bandits [2]), provably optimal algorithms for balancing exploration against exploitation are known [3,
2]. However, in the general settings where RL is used, such algorithms are unknown. In the absence
of methods that work well in both theory and practice, state-of-the-art RL algorithms rely on heuristic
exploration strategies such as adding noise to actions or random sampling of sub-optimal actions
(e.g., e-greedy). However, such strategies fail in sparse reward scenarios where infrequent rewards
hinder policy improvement. One such task is the notorious ATARI game, Montezuma’s Revenge [4].
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Figure 1: (a) At the start of training all locations are novel for the agent ( triangle), and therefore
the circles representing intrinsic rewards are evenly distributed across the map. The blue circles

represent sources of extrinsic reward or task-reward. Here intrinsic rewards can distract the agent, as
the sum of extrinsic and intrinsic rewards can be increased by moving along the bottom corridor. (b)
This type of distraction is a possible reason why an intrinsic reward method does not consistently
outperform a method trained using only extrinsic rewards across ATARI games. Intrinsic rewards
help in some games where the task or extrinsic reward is sparse (e.g., Montezuma’s revenge), but
hurt in other games such as James Bond. Our proposed method, EIPO, intelligently uses intrinsic
rewards when needed and consistently matches the best-performing algorithm amongst extrinsic and
extrinsic+intrinsic methods.

Sparse reward problems can be solved by supplementing the task reward (or extrinsic reward rg) with
a dense exploration bonus (or intrinsic reward 7 ;) generated by the agent itself [4-8]. Intrinsic rewards
encourage the agent to visit novel states, which increases the chance of encountering states with task
reward. Many prior works [4, 8, 9] show that jointly optimizing for intrinsic and extrinsic reward
(i.e., g + Ary, where A > 0 is a hyperparameter) instead of only optimizing for extrinsic reward
(i.e., A = 0) improves performance on sparse reward tasks such as Montezuma’s revenge [4, 9, 10].

However, a recent study found that using intrinsic rewards does not consistently outperform simple
exploration strategies such as e-greedy across ATARI games [11]. This is because the mixed objective
(rg + Arp) is biased for || > 0, and optimizing it does not necessarily yield the optimal policy with
respect to the extrinsic reward alone [12]. Fig. la illustrates this problem using a toy example. Here
the green triangle is the agent and the blue/pink circles denote the location of extrinsic and intrinsic
rewards, respectively. At the start of training, all states are novel and provide a source of intrinsic
reward (i.e., pink circles). This makes accumulating intrinsic rewards easy, which the agent may
exploit to optimize its objective of maximizing the sum of intrinsic and extrinsic rewards. However,
such optimization can result in a local maxima: the agent might move rightwards along the bottom
corridor, essentially distracting the agent from the blue task rewards at the top. In this example,
since it is not hard to find the task reward, better performance is obtained if only the extrinsic reward
(A = 0) is maximized. The trouble, however, is that in most environments one doesn’t know a priori
how to optimally trade off intrinsic and extrinsic rewards (i.e., choose \).

A common practice is to conduct an extensive hyperparameter search to find the best A, as different
values of \ are best suited for different tasks (see Fig. 4). Furthermore, as the agent progresses on
a task, the best exploration-exploitation trade-off can vary, and a constant A may not be optimal
throughout training. In initial stages of training exploration might be preferred. Once the agent is
able to obtain some task reward, it might prefer exploiting these rewards instead of exploring further.
The exact dynamics of the exploration-exploitation trade-off is task-dependent, and per-task tuning is
tedious, undesirable, and often computationally infeasible. Consequently, prior works use a fixed A
during training, which our experiments reveal is sub-optimal.

We present an optimization strategy that alleviates the need to manually tune the relative importance
of extrinsic and intrinsic rewards as training progresses. Our method leverages the bias of intrinsic
rewards when it is useful for exploration and mitigates this bias when it does not help accumulate
higher extrinsic rewards. This is achieved using an extrinsic optimality constraint that forces the
extrinsic rewards earned after optimizing the mixed objective to be equal to the extrinsic rewards
accumulated by the optimal policy that maximizes extrinsic rewards only. Enforcing the extrinsic
optimality constraint in general settings is intractable because the optimal extrinsic reward is unknown.
We devise a practical algorithm called Extrinsic-Intrinsic Policy Optimization (EIPQO), which uses
an approximation to solve this constrained optimization problem (Section 3).

While in principle we can apply EIPO to any intrinsic reward method, we evaluate performance
using state-of-the-art random network distillation (RND) [9]. Fig. 1b presents teaser results on two
ATARI games: (i) Montezuma’s Revenge - where joint optimization with RND (red) substantially



outperforms a PPO policy [13] optimized with only extrinsic rewards (black); (ii) James Bond -
where PPO substantially outperforms RND. These results reinforce the notion that bias introduced
by intrinsic rewards helps in some games, but hurts in others. Our algorithm EIPO (blue) matches
the best algorithm in both games, showing that it can leverage intrinsic rewards as needed. Results
across 61 ATARI games reinforce this finding. Additionally, in some games EIPO outperforms
multiple strong baselines with and without intrinsic rewards, indicating that our method can not only
mitigate the potential performance decreases caused by intrinsic reward bias, but can also improve
performance beyond the current state-of-the-art.

2 Preliminaries

We consider a discrete-time Markov Decision Process (MDP) consisting of a state space S, an action
space A, and an extrinsic reward function Rg : S x A — R. We distinguish the extrinsic and
intrinsic reward components by E' and I, respectively. The extrinsic reward function R g refers to
the actual task objective (e.g., game score). The agent starts from an initial state sg sampled from
the initial state distribution py : S — R. At each timestep ¢, the agent perceives a state s; from the
environment, takes action a; sampled from the policy 7, receives extrinsic reward 7 = R (s, at),
and moves to the next state s; 1 according to the transition function 7 (s¢11|s¢, at). The agent’s
goal is to use interactions with the environment to find the optimal policy 7 such that the extrinsic
objective value Jg(7) is maximized:

max Jg (), where Jg(7) = Egy aq.mor {Z vtrﬂ (Extrinsic objective), (1)
=0

80 ~ po,ar ~ w(alst), St41 ~ T (st41]s¢,a:) VE >0
where 7y denotes a discount factor. For brevity, we abbreviate Eg; o....n H asE, H unless specified.

Intrinsic reward based exploration strategies[4, 8, 9] attempt to encourage exploration by providing
“intrinsic rewards" (or “exploration bonuses") that incentivize the agent to visit unseen states. Using
the intrinsic reward function Ry : § x A — R, the optimization objective becomes:

max Jp i1 (), where Jpi1(7) = Ex [ A + Arf)] (Mixed objective), ()
TE

t=0
where )\ denotes the intrinsic reward scaling coefficient. We abbreviate the intrinsic reward at
timestep ¢ as rtI = R (st,ay). State-of-the-art intrinsic reward based exploration strategies [9, 14]
often optimize the objective in Eq. 2 using Proximal Policy Optimization (PPO) [13].

3 Mitigating the Bias of Intrinsic Rewards

Simply maximizing the sum of intrinsic and extrinsic rewards does not guarantee a policy that
also maximizes extrinsic rewards: argmax, . cynJe+1(TEp+r) # argmax, cpn JJe(mE). At
convergence the optimal policy 7y ; = argmax,  Je+ 1(mr+1) could be suboptimal w.r.t. Jg,
which measures the agent’s task performance. Because the agent’s performance is measured using
extrinsic reward only, we propose enforcing an extrinsic optimality constraint that ensures the optimal
“mixed" policy 7, ; = argmax,,  Jpy 1(mE+1) leads to as much extrinsic reward as the optimal
“extrinsic" policy 77, = arg max, 1y Je(7g). The resulting optimization objective is:

max_ Jeir(TEir) 3)

ey €Il

subjectto Jg(mpi+r) —max Jg(rg) =0 (Extrinsic optimality constraint).
TE

Solving this optimization problem can be viewed as proposing a policy 74 ; that maximizes Jg 1,
and then checking if the proposed 7 is feasible given the extrinsic optimality constraint.

The constrained objective is difficult to optimize because evaluating the extrinsic optimality con-
straint requires Jgz(7},), which is unknown. To solve this optimization problem, we transform it
into an unconstrained min-max optimization problem using Lagrangian duality (Section 3.1). We
then describe an iterative algorithm for solving the min-max optimization by alternating between
minimization and maximization in Section 3.2, and we present implementation details in Section 3.3.



3.1 The Dual Objective: Unconstrained Min-Max Optimization Problem

The Lagrangian dual problem for the primal constrained optimization problem in Eq. 3 is:

CfIGlIRIi ﬂg%}é Je1(mesr) + a(Je(rpyr) — max JE(WE))}; 4)

where o € R™ is the Lagrangian multiplier. We rewrite Eq. 4 by merging Jg, ;(7) and Jg(7):

Jg_,'_l(?TE_._[) —JE+1(7TE+])+04JE(7TE+[ 7TE+I|:Z’Y 1+a (St,at)+rl(5t,at)]]

The re-written objective provides an intuitive interpretation of a: larger values correspond to increas-
ing the impetus on extrinsic rewards (i.e., exploitation). Substituting Jz, ;(mE4r1) into Eq. 4 and
rearranging terms yields the following min-max problem:

min | max mln J TEer) —aJg ’/TEi| 5
min | max min J§ (tper) — aJp(re) 5)

3.2 Algorithm for Optimizing the Dual Objective

We now describe an algorithm for solving 7, mg4 1, and « in each of the sub-problems in Eq. 5.

Extrinsic policy 7z (min-stage). 7 is optimized via the minimization sub-problem, which can be
re-written as a maximization problem:
min JE+[(7TE+I)_04JE(7TE) — max OéJE(FE)—JI%+I(7TE+]) (6)
mrell wpell
The main challenge is that evaluating the objectives Jg | (rgyr) and Jg(7g) requires sampling
trajectories from both policies mg4; and wg. If one were to use an on-policy optimization method
such as PPO, this would require sampling trajectories from two separate policies at each iteration
during training, which would be data inefficient. Instead, if we assume that the two policies are
similar, then we can leverage results from prior work to use the trajectories from one policy (7g41)
to approximate the return of the other policy (7g) [15, 16, 13].

First, using the performance difference lemma from [15], the objective aJg(7g) — J 5 + 7(TE4r) can
be re-written (see Appendix A.1.3 for detailed derivation):

OLJE(ﬂ'E) — J%+](7TE+I) = E,TE [ny UmlEn+I (stv at)} (7)
t=0

min

VEET (30) = Erp | 220" (F 4 1)ls0 = st
t=0

where UTEH (54, a) == arF + YVt (se41) — Vgt (se),

Next, under the similarity assumption, a lower bound to the objective in Eq. 7 can be obtained [13]:

o0
. T lag|S
Erp [Z Y U;?nﬂ Sta at)} > EWE-H [Z ’Yt min {MU;?;I (Stv at)a
t=0

7TE+I(at|5t)

clip (W, 1—e1+ 6) Ut (s, at)H

7TE+I(at|St

®)

where € € [0, 1] denotes a threshold. Intuitively, this clipped objective (Eq. 8) penalizes the policy
TR (at | S t)

7 that behaves differently from 7g ; because overly large or small
Te1(ast)

terms are clipped.

More details are provided in Appendix A.2.

Mixed policy 7. ; (max-stage). The sub-problem of solving for mg . is posed as

max Jg,;(Tpyr) — aJe(mE). 9
mpyr€ll



We again rely on the approximation from [13] to derive a lower bound surrogate objective for
Jg 1(meyr) — aJp(TE) as follows (see Appendix A.1.2 for details):

> 7TE+I(at|5t)

Jie1(Tpe1) = ap(rp) > Exp | Y 7" min { Ulti(ses ),
t=0 ﬂ—E(at‘St) (10)
. 71'E+1(at|st)
1 —=1—¢1 ure
clip < WE(at|5f,) ) € + 6) max(8t7 at)}i| )

where UZZ, and V7” are defined as follows:

UnE (st ar) = (L+a)rf +rf +yaVE® (sip1) — aVE" (1)
(o]
VEE(st) =Egp [Zytrﬂso = St:|.
t=0

Lagrangian multiplier c. We solve for « by using gradient descent on the surrogate objective
derived above. Let g() := maxy . ,en Mingen Jg, ;(Tp41) — aJp(ng). Therefore, Vg(a) =
Je(ret+1) — Je(mE). We approximate Vg(a) using the lower bound surrogate objective:

7TE+I(CLt |5t)

Je(tgt1) — Je(mg) 2 L(tg, Tp41) = Exy [ZWt min{ ATE (51, ar),
t=0 WE(at|st) (11)
- (mpyr(adse) > .
clip| ————=,1—¢,14+¢) A" (s¢,a ,
p( e (at]st) (st t)H

where A" (sy,ar) = 1F + YVEE (s141) — VAE (s¢) is the advantage of taking action a; at state s,
and then following 7 for subsequent steps. We update « using a step size 8 (Appendix A.1.4):

a+ a—BL(rE, TEi1). (12)

Unlike prior works that use a fix trade off between extrinsic and intrinsic rewards, optimizing «
during training allows our method to automatically and dynamically tune the trade off.

3.3 Implementation

Min-max alternation schedule. We use an iterative optimization scheme that alternates between
solving for wr by minimizing the objective in Eq. 6, and solving for g ; by maximizing the
objective in Eq. 9 (max_stage). We found that switching the optimization every iteration hinders
performance which is hypothesize is a result of insufficient training of each policy. Instead, we switch
between the two stages when the objective value does not improve anymore. Let J[i] be the objective
value J§  ;(Tg41) — aJp(ng) at iteration 4. The switching rule is:

J[i] = J[i —1] <0 = max_stage < False, ifmax_stage = True
J[i] = J[i —1] > 0 = max_stage < True, ifmax_stage = False,

where max_stage is a binary variable indicating whether the current stage is the max-stage. « is
only updated when the max-stage is done using Eq. 12.

Parameter sharing. The policies 7g; and 75 are parametrized by two separate multi-layer per-
ceptrons (MLP) with a shared CNN backbone. The value functions Vg _’i}” and VL ¥ are represented
in the same fashion, and share a CNN backbone with the policy networks. When working with
image inputs (e.g., ATARI), sharing the convolutional neural network (CNN) backbone between 7
and mg4 1 helps save memory, which is important when using GPUs (in our case, an NVIDIA RTX
3090Ti). If both policies share a backbone however, maximizing the objective (Eq. 9) with respect to
7 g4 might interfere with Jg(7g), and impede the performance of 7g. Similarly, minimizing the
objective (Eq. 6) with respect to g might modify J, ; and degrade the performance of 7 1.

Interference can be avoided by introducing auxiliary objectives that prevent decreases in Jg(7g)
and Jz, ; when optimizing for mg;, 7g, respectively. For example, when updating 7 in the
max-stage, maxy ., Jg, ;(Tp41) — aJp(7E), the auxiliary objective max, Jg(mg) can prevent
updates in the shared CNN backbone from decreasing J (7). We incorporate the auxiliary objective
without additional hyperparameters (Appendix A.2.3). The overall objective is in Appendix A.2.4.



Algorithm 1 Extrinsic-Intrinsic Policy Optimization (EIPO)

1: Initialize policies mp; and 7, max_stage[0] <« False, and J[0] + 0

2: fori=1---do > ¢ denotes iteration index
3: if max_stage[i - 1] then > Max-stage: rollout by mg and update wg
4: Collect trajectories 75 using mg and compute UTE (s¢, at) V(st,at) € T

5: Update mg by Eq. 10 and 7g by auxiliary objective (Section 3.3)

6: J[’L']FJ(EJ{JFI(WE_‘_])—O(JE(WE)

7: max_stage[i] «+ J[i| — J[i —1] <0

8: else > Min-stage: rollout by 7w and update 7
9: Collect trajectories Tg 1 using 77 and compute US4 (s, ar) V(s¢, ar) € Tir
10: Update 7 by Eq. 8 and w7 by auxiliary objective (Section 3.3)

11: J[’L']FJ(EJ{JFI(WE_‘_])—O(JE(WE)
12: max_stagel[il « J[i|— J[i—1] >0
13: end if

14: ifmax_stage[i - 1] = True and max_stage[i] = False then
15: Update o (Eq. 32) > Update when the max-stage is done
16: end if
17: end for

Extrinsic-Intrinsic Policy Optimization (EIPO) - the policy optimization algorithm we introduce
to solve Eq. 5, is outlined in Algorithm 1. Pseudo-code can be found in Algorithm 2, and full
implementation details including hyperparameters can be found in Appendix A.2.

4 Experiments

While EIPO is agnostic to the choice of intrinsic rewards, we mainly experiment with RND [9]
because it is the state-of-the-art intrinsic reward method. EIPO implemented with RND is termed
EIPO-RND and compared against several baselines below. All policies are learned using PPO [13].

* EO (Extrinsic only): The policy is trained using extrinsic rewards only: 7* = arg max < Jg(m).

* RND (Random Network Distillation) [9]: The policy is trained using the sum of extrinsic rewards
(rf) and RND intrinsic rewards (Ar{): 7* = arg max, .y Jp1 (). For ATARI experiments, we
chose a single value of \ that works best across games. Other methods below also use this A.

¢ EN (Ext-norm-RND): We found that a variant of RND where the extrinsic rewards are normalized
using running mean and standard deviation (Appendix A.2.2) outperforms the original RND
implementation, especially in games where RND performs worse than EO. Our method EIPO and
other baselines below are therefore implemented using Ext-norm-RND.

* DY (Decay-RND): Instead of having a fixed trade-off between exploration and exploitation
throughout training, dynamically adjusting exploration vs. exploitation can lead to better per-
formance. Without theoretical results describing how to make such adjustments, a commonly
used heuristic is to gradually transition from exploration to exploitation. One example is e-greedy
exploration [17], where € is decayed over the course of training. Similarly, we propose a variant
of Ext-norm-RND where intrinsic rewards are progressively scaled down to eliminate exploration
bias over time. Intrinsic rewards r/ are scaled by A(i), where i denotes the iteration number.

The objective function turns into Jg 1 = E, [Zfio Y (rE + X(@)rl)|, where A(i) is defined as

A(i) = clip(%()\max — Amin); Amin, Amax ). Here, Amax and A, denote the predefined maximum

and minimum A(%), and I is the iteration after which decay is fixed. We follow the linear decay
schedule used to decay e-greedy exploration in DQN [17].

* DC (Decoupled-RND) [18]: The primary assumption in EIPO is that 7g ; and 7 are similar
(Section 3.2). A recent work used this assumption in a different way to balance intrinsic and
extrinsic rewards [18]: they regularize the mixed policy to stay close to the extrinsic policy by
minimizing the Kullback—Leibler (KL) divergence Dxy (7 g||7 g+ s). However, they do not impose
the extrinsic-optimality constraint, which is a key component in EIPO. Therefore, comparing
against this method called Decoupled-RND (DC) [18] will help separate the gains in performance
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Figure 2: (a) 2D navigation task with a similar distribution of extrinsic and intrinsic rewards as
Figure 1a. The gray triangle is the agent. The black dot is the goal providing extrinsic reward. Red
dots are randomly placed along the bottom corridor at the start of every episode. Due to the novelty
of their locations, these dots serve as a source of intrinsic rewards. (b) RND is distracted by intrinsic
rewards and fails to match EO optimized only with extrinsic rewards. Without intrinsic rewards, EO
is inferior to our method EIPO in discovering a good path to the black goal. This result indicates that
EIPO is not distracted by intrinsic rewards and uses them as necessary to improve performance. (c)
« controls the importance of extrinsic optimality constraint. It decreases until the extrinsic return
starts to rise between 0.5 and 1.0 million frames. Afterwards, « increases, showing that our method
emphasizes intrinsic rewards at the start of training, and capitalizes on extrinsic rewards once found.

that come from making the similarity assumption versus the importance of extrinsic-optimality
constraint. We adapted DC to make use of Ext-norm-RND intrinsic rewards:

oo o0
t B I t E
Thir = argmawaEH[ E Y (ry + 1) —DKL(TFEH’]TE+[)}7 Ty = arg max E,, { E ~yiry }
TE+I t=0 B t=0

4.1 Illustrative example

We exemplify the problem of intrinsic reward bias using a simple 2D navigation environment (Fig. 2a)
implemented using the Pycolab game engine [19]. The gray sprite denotes the agent, which observes
a b x b pixel window view of its surroundings. If it reaches the (black) location at the top of the map,
an extrinsic reward of +1 is provided. The red circles are randomly placed in the bottom corridor at
the start of each episode. Because these circles randomly change location, they induce RND intrinsic
rewards throughout training. Because intrinsic rewards along the bottom corridor are easier to obtain
than the extrinsic reward, optimizing the mixed objective Jg 1 can yield a policy that results in the
agent exploring the bottom corridor (i.e., exploiting the intrinsic reward) without ever discovering the
extrinsic reward at the top. Fig. 2b plots the evolution of the average extrinsic returns during training
for EO, RND, and EIPO-RND across 5 random seeds. We find that EIPO-RND outperforms both
RND and EO. RND gets distracted by the intrinsic rewards (red blocks) and is worse than the agent
optimizing only the extrinsic reward (EO). EO performs slightly worse than EIPO-RND, possibly
because in some runs the EO agent fails to reach the goal without the guidance of intrinsic rewards.

To understand why EIPO-RND performs better, we plot the evolution of the parameter « that trades-
off exploration against exploitation during training (Fig. 2c). Lower values of « denote that the agent
is prioritizing intrinsic rewards (exploration) over extrinsic rewards (exploitation; see Section 3.1).
This plot shows that for the first ~ 0.5M steps, the value of « decreases (Fig. 2c) indicating that the
agent is prioritizing exploration. Once the agent finds the extrinsic reward (between 0.5M — 1M
steps), the value of « stabilizes which indicates that further prioritization of exploration is unnecessary.
After ~ 1M steps the value of « increases as the agent prioritizes exploitation, and extrinsic return
increases (Fig. 2b). These plots show that EIPO is able to dynamically trade-off exploration against
exploitation during training. The dynamics of « during training also supports the intuition that EIPO
transitions from exploration to exploitation over the course of training.

4.2 EIPO Redeems Intrinsic Rewards

To investigate if the benefits of EIPO carry over to more realistic settings, we conducted experiments
on ATARI games [20], the de-facto benchmark for exploration methods [4, 11]. Our goal is not to
maximize performance on ATARI, but to use ATARI as a proxy to anticipate performance of different
RL algorithms on a new and potentially real-world task. Because ATARI games vary in the task
objective and the difficulty of exploration, if an algorithm A consistently outperforms other algorithms
(say B) on ATARYI, it provides evidence that even for a new task whose exploration difficulty and task
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Figure 3: (a) EIPO-RND (ours) has a higher probability of improvement P(EIPO-RND > EO)
over EO than all other baselines. It suggests EIPO-RND is more likely to attain a higher score than
EO, compared to other methods. (b) Probability of improvement P(EIPO-RND > B) > 0.5 VB
indicates that EIPO-RND performs strictly better than the baselines in the majority of trials. (c) Each
colored curve denotes the evolution of « in one game using EIPO. The variance in « trajectories
across games reveals that different exploration-exploitation dynamics is apt for different games.

objective is unknown, the same algorithm may fare better. If we can find such an algorithm, it eases
the job of RL practitioners by mitigating the need for the current practice of cycling through different
RL algorithms to find the one that works the best for the task at hand.

We used “probability of improvement" metric P(A > B) with a 95%-confidence interval (see
Appendix A.4.2; [21]) to judge if algorithm A consistently outperforms B across all ATARI games. If
P(A > B) > 0.5, it indicates that algorithm A outperforms B on a majority of games (i.e., consistent
improvement). Higher values of P(A > B) means greater consistency in performance improvement
of A over B. For the sake of completeness, we also report P(A > B) which is a weaker condition
of improvement measuring if algorithm A is at-par or better than algorithm B. These statistics are
calculated using the median of extrinsic returns over the last hundred episodes for at least 5 random
seeds for each method and game. More details are provided in Appendix A.4.

Comparing Exploration with Intrinsic Rewards v/s Only Optimizing Extrinsic Rewards Re-
sults in Fig. 3a show that P(RND > EO) = 0.49 with confidence interval {0.46, 0.52}, where EO
denotes PPO optimized using extrinsic rewards only. These results indicate inconsistent performance
gains of RND over EO, an observation also made by prior works [11]. Ext-norm-RND (EN) fares
slightly better against EO suggesting that normalizing extrinsic rewards helps the joint optimization of
intrinsic and extrinsic rewards. We find that P(EIPO-RND > EQ) = 0.65 with confidence interval
{0.62,0.67}, indicating that EIPO is able to successfully leverage intrinsic rewards for exploration
and is likely to outperform EO on new tasks. Like EIPO, Decoupled-RND assumes that g and
T g4 are similar, but Decoupled-RND is not any better than Ext-norm-RND when compared against
EO. This suggests that the similarity assumption on its own does not improve performance and that
extrinsic-optimality-constraint is key to performance improvement.

EIPO Strictly Outperforms Baseline Methods Results in Fig. 3b show that P(EIPO-RND >
B) > 0.5 in a statistically rigorous manner for all baseline algorithms (B) across ATARI games.
Experiments on the Open AI Gym MuJoCo benchmark follow the same trend: EIPO is either at-par
or outperforms the best algorithm amongst EO and RND (see Appendix 10). These results show that
EIPO is also applicable to tasks with continuous state and action space. The results in ATARI and
MuJoCo benchmarks taken together provide strong evidence that given a new task, EIPO has highest
chance of achieving the best performance.

4.3 Does EIPO Outperform RND Tuned with Hyper-parameter Search?

In results until now, the RND method used the single best intrinsic reward scaling coefficient A across
games. Our claim is that EIPO can automatically tune the weighting between intrinsic and extrinsic
rewards. If this is indeed true, then EIPO should either match or outperform the best A determined on
a per-game basis through an exhaustive search over different values of A. Since such hyper-parameter
search is time consuming, for such an evaluation we selected a mix of representative games: a few
where PPO optimized with only extrinsic rewards (EO) outperforms RND and other games where
RND outperforms EO (e.g., Venture and Montezeuma’s Revenge).

For each game we searched over multiple values of A based on the relative difference in magnitudes
between intrinsic (1) and extrinsic (rF) rewards (see Appendix A.4.4 for details). The results
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Figure 4: No choice of the intrinsic reward scaling coefficients A\ consistently yield performance
improvements over RND and EO, whereas our method EIPO-RND consistently outperforms RND
and EO without any tuning across environments. It indicates that our method is less susceptible to A.

summarized in Fig. 4 show that no choice of A\ consistently improves RND performance. For
instance, r” ~ A\’ substantially improves RND in Jamesbond, yet deteriorates RND in YarsRevenge.
Moreover, we found that with RND, the relationship between choice of A and final performance
is not intuitive. For example, Jamesbond is regarded as an easy exploration game [4]. Yet, the
agent that uses high intrinsic reward (i.e., ¥ < Ar) outperforms the agent with small intrinsic
reward (r > ArT). EIPO overcomes these challenges and is able to automatically adjust the relative
importance of intrinsic rewards. It outperforms RND despite game specific tuning of \.

Dynamically adjustment of Exploration-Exploitation trade off during training improves per-
formance If the performance gain of EIPO solely resulted from automatically determining a
constant trade off between intrinsic and extrinsic rewards throughout training on a per-game basis,
an exhaustive hyper-parameter search of A should have matched the performance of EIPO-RND.
The fact that EIPO-RND outperforms RND with different choices of A leads us to hypothesize
that adjusting the importance of intrinsic rewards over the course of training is also important to
performance. This dynamic adjustment is controlled the value of o which is optimized during training
(Section 3.2). Fig. 3c shows the trajectory of « during training across games. In most games, «
increases over time indicating that the agent transitions from exploration to exploitation as the training
progresses. Such decay in exploration is critical to performance: the algorithm, Decay-RND (DY),
that implements this intuition by uniformly decaying the importance of intrinsic rewards outperforms
RND (Fig. 5 and Fig. 3a). However, in some games « decreases over time indicating that more
exploration is required in the end. An example is the game Carnival where EIPO-RND jumps in
performance at the end of training which is accompanied by decrease in « (see Appendix A.8). These
observations suggest that simple strategies that follow the same schedule for adjusting the balance
between intrinsic and extrinsic rewards across tasks will perform worse than EIPO. The result that
P(EIPO-RND > DY) = 0.59 reported in Fig. 3b confirms our belief and establishes that dynamic
and per-game tuning of exploration-exploitation tradeoff is necessary for good performance.

4.4 Does EIPO improve over RND only in Easy Exploration Tasks?

The observation that EIPO-RND outperforms Table 1: EIPO-RND is either at-part or outper-
RND on most games might result from perfor- forms RND in the games where RND is better
mance improvement on easy exploration games, than EO (i.e., hard-exploration tasks).

which constitute the majority in ATARI, at the ex-

pense of worse perfor.rnancelor.l hard exploration Algorithm PPO-normalized score
games. To mitigate this possibility, we evaluated Mean (CI)
performance on games where RND outperforms RND 384.57  (85.57,756.69)

EO as a proxy for hard exploration. The PPO-  Ext-norm RND | 427.08  (86.53, 851.52)
normalized scores [21] and 95% confidence inter- Decay-RND 383.83  (84.19,753.17)

. . Decoupled-RND 1.54 (1.09, 2.12)
vals of various methods are reported in Table 1. EIPO-RND 43556 (10945 874.88)
EIPO-RND achieves slightly higher mean score : —
than Ext-norm-RND, but lies within the confidence
interval. This result suggests that EIPO not only mitigates the bias introduced by intrinsic rewards in
easy exploration tasks, but either matches or improves performance in hard exploration tasks.




5 Discussion

EIPO can be a drop-in replacement for any RL algorithm. Due to difficultly in tuning the intrinsic
rewards and inconsistent performance across tasks, until now intrinsic reward based exploration
was not part of the standard pipeline of state-of-the-art RL algorithms. EIPO-RND mitigates these
challenges and also outperforms noisy networks [22], an exploration method that does not use
intrinsic rewards, but is the best performing exploration strategy across ATARI games when used with
Q-learning [17] (see Appendix A.9). The consistent performance gains of EIPO-RND on ATARI and
MuJoCo benchmarks make it a strong contender for the defacto RL algorithm going forward. Though
we performed experiments with PPO, the EIPO objective (Eq. 3.1) is agnostic to the particular choice
of RL algorithm. As such, it can be used as a drop-in replacement in any RL pipeline.

Limitations. Across the 61 ATARI games, we use the same initial value of o and demonstrated that
per-task tuning of importance of intrinsic rewards can be avoided by optimizing for cv. However, it is
possible that the initial value of a and learning step-size 8 depend on the choice of intrinsic reward
function. To see if this the case, using the same « and /3, we tested EIPO with another intrinsic
reward metric - ICM [8]. The preliminary results in Appendix A.10 show that performance gains of
EIPO-ICM over the baselines are less consistent than ETPO-RND. While one possibility is that RND
is a better intrinsic reward than ICM, the other possibility is the intimate dependence between EIPO
hyperparameters and the choice of intrinsic reward function which future work should investigate.
Finally, the performance benefits of EIPO are limited by the how good is the underlying intrinsic
reward function. Finding better intrinsic rewards remains an exciting avenue of research, which we
hope can be accelerated by EIPO because it removes the need for manual tuning.

Potential applications to reward shaping. Intrinsic rewards can be thought of a particular instantia-
tion of reward shaping [23] — the practice of incorporating auxiliary reward terms to boost overall task
performance which is key to success of RL on many applications (see examples in [24, 25]). Balanc-
ing auxiliary rewards against task reward is tedious and often necessitates extensive hyper-parameter
search. Because EIPO makes no intrinsic reward specific assumptions, its success in balancing the
RND auxiliary reward suggests it might also be applicable in other reward shaping scenarios.
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A Appendix

A.1 Full derivation

We present the complete derivation of the objective function in each sub-problem defined in Section
3.2. We start by clarifying notation:

A.1.1 Notations

o Jp(m) =Esp a0, or {Zfio 'ytrﬂ,so ~ po,ar ~ w(als), Sev1 ~ T (Se41]8t,a) VE >0

¢ Toar(m) = Ex| S5 (P + )]

V]g(st) =Ex [Zzo 'VtTF‘SO = St}

VEy1(s0) 1= Ex | X320 7 (F + )50 =

VL (s0) = Ex | 57207 (L4 a)rf ) so = 1]

A.1.2 Max-stage objective U %,

We show that the objective (LHS) can be lower bounded by the RHS shown below

> 7TE+I(at|St)

Jipir(meyr) — aJe(mr) > Eqy {;Vt min{ s (ar]se) Unh (81, at), ")
clip mocr(wls) o Umax(st,at)}
mi(at|st)

We can then expand the LHS as the follows:

Jipir(mesr) — aJe(mE)
= —aJp(me) + Jp [ (TEtr)

= soNpo [Z,thE St :| E7TE+I[

= Enpyr | — V" (50) + ;’yt((l +a)rf +r])]

NE

P+ ) + )]

t

Il
=)

For brevity, let r, = (1 + a)rf + r} and aV;*(s;) = V;. Expanding the left-hand of Eq. 13:
Vo + Y 3 = (ro + 23 = Vo) +y(r1 + %5 = W) + 77 (ra + 255 - J5) +
t=0

Y (re +VWigr — Va)

M

-
I
=)

tnqg

YA+ )iy +rf +7aVEE (se01) — VT (s,))
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To facilitate the following derivation, we rewrite the objective J5_ ;(7py1) — aJp(7E):
Jir1(mpt1) —aJp(mp) = Expy, [ZV o (5t; @t ] (14)

= Z ZP)/P St = S|PO, 7TE+I Z 7TE+I max(st7 a’t) (15)

t=0 seS acA
= Z d‘ngrlﬁ Z TE+I a’| max(st’ a’t) (16)
sES acA
= E7TE+I {Ummx(sta at)} 17)
where dpc """ is the discounted state visitation frequency of policy mz,; with the initial state

dlstnbutlon po and discount factor -y, defined as:
oo
gy (s) = Z’YtP(St = s|po, TE+1)
t=0

Note that for brevity, we write ESNd’,ff“”,aNﬂ H asEr.,, {

} instead. To get rid of the dependency
on samples from 7z ;, we use the local approximation [16, 15] shown below:

Ly (mper) = adp(np) + > 32 (s) Y wpir(als)UnE (si, ar). (18)
s€S acA

The discounted state visitation frequency of wg  is replaced with that of 7. This local approxima-
tion is useful because if we can find a 7o such that L%, (o) = Jg ; (7o), the local approximation
matches the target in the first order: Vi, L% ((TE41)|rpy =m0 = Vap+1d By 1 (TE4+1)xp =m0
This implies that if LY, ;(7g4 1) is improved, J§_ ;(TE41)|rp, =, Will be improved as well. Us-
ing the technique in Schulman et al. [16], this local approximation can lower bound Jg_ ;(Tg41) —
aJg (7 g) with an additional KL-divergence penalty as shown below:

Jpir(meyr) — aJe(mg) > Ly (tevr) — aJp(te) — DR (Te||TE41) (19)
=575 (5) S wpa(als)URE (51, ar) — CDE™ (mg|[mpr)
SES a€A
(20)
=S e () S TS e () - DR (e )
s€S acA g (als)
(21)
— M TE _ max
- E7TE |: 7TE((1|$) Umax( )] CDKL (ﬂ-EHﬂ—EUrI) (22)

where C' denotes a constant. As it is intractable to evaluate D™ (7 g||7g41), the clipping approach
proposed in Schulman et al. [13] receives wider spread of use. Following [13], we convert Eq. 22 to a
clipped objective shown as follows:

Er [ tmin{MUggxs,a ,cli (Wﬂ—e,l—l—e) UZE (s¢,a }]
i ;7 Te(aist) (st, a0), clip mi(at|st) (st 02)

(23)

Note that to make use of the approximation proposed in [16, 15], we make the assumption that in the
beginning of the max-stage, 7Tz = mg4 7. Under this assumption, 7 serves as my (see above). This
enables updating 7 ; using the local approximation. We leave relaxing this assumption as future
work.
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A.1.3 Min-stage objective U =+’

min

We show that the objective (LHS) can be approximated by the RHS shown below

e (at|s -
aJp(re) = Jp (Teir) > 7TE+I[Z’Y mln{ placls:) Uit (e, ar),
TE+1(atlst) (24)

clip (W,l e+ e> U;f;’(st,at)}.
merr(atlst)

The derivation for the min-stage is quite similar to that of the max-stage. Thus we only outline the

key elements:

aJp(rp) = Jpp1(meyr) = —Jpi(Tp4r) + aJp(TE) (25)
— —Eo, [VEET" (0)] + 0B [ D 40P (26)
t=0

it o]

e
= Enp | Do (arf + VS (i) = VEET ()| 28)

S t=0
= Erg | Do arf +VEL  (s10) ~ VEE s 29)

S t=0
R Eng | Yy arf + A VERF (5041) — Vgﬁf(st)] (30)

S t=0
Since we empirically find that V5, _’i}l "* is hard to fit under a continually changing «, we replace

Veirh® with VP7" in Equation 29, which leads to Eq. 30. Following the same recipe used in

deriving the objective of max-stage gives rise to the following objective:

| S— [Z’y mln{ m5(a]st) U;fn“(st,at),clip <7TE(Q‘5|S’5)71 e 14 €> Umﬁl I(St,at)}]

TEt+1(at|S¢) Tr+1(at]st)
(31)

A.1.4 « optimization

Let g() := maxy, e Minggen Jg, ;(7p41) — aJp(ng). As mg and 71 are not yet optimal
during the training process, we solve min,, g(«) using stochastic gradient descent as shown below:

a+ a—FBVag(a) (32)
=a— BVa(Jgp(TE+1) — aJp(TE)) (33)
=a— B(Je(mE+1) — JE(7E)) (34

where (3 is the learning rate of a. Jg(ng+7) — Je(7g) can be lower bounded using the technique
proposed in [13] as follows:

T at|s
Je(mesr) — Je(rg) 2 E {ZV mlﬂ{ aeiC] t)Aﬂ-E(Shat)a

TE cLt|5t)

clip M, 1—e1+ e) A”E(st,at)}],
mr(at|st)

where A%F (s¢,at) = rf +yVE® (si41) — V4 (s¢) denotes the extrinsic advantage of 7.

(35)

A.2 Implementation details
A.2.1 Algorithm

Clipped objective We use proximal policy optimization (PPO) [13] to optimize the constrained
objectives in Equation 6 and Equation 9. The policies mg and 7g are obtained by solving the
following optimization problems with clipped objectives:
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* Max-stage:

max E o [min {M e (s,a) clip(%(a‘s), 1—€1+ e)U&oﬁi(s, a)H (36)

TEAT 94(als) T 7 (als)

* Min-stage:

) me(als) x5 ., mglals) o
max E o {mm {7Umin“ (s,a),clip(———<,1—€,14+¢€)U_ (s, a)H 37
e E+1 WOEliI(a|s) WOEliI(a|S)

where ¢ denotes the clipping threshold for PPO, and 7% and ﬂ“Eli ; denote the policies that collect
trajectories. We will detail the choices of € in the followmg paragraphs.

Rearranging the expression for GAE To leverage generalized advantage estimation (GAE) [26],
we rearrange UTE_and U ™' to relate them to the advantage functions. The advantage function

max

TE TE+I
A% and AR ", are defined as:

AFE (s0) = 18 +4VE" (se41) = VE© (1) (38)
AT (s) =1 + ] +AVEET (s141) — Vai i (se).- (39)
As such, we can rewrite UZZ,_and U " as:
Unt(se,ar) = (L+ @) +r{ +7aVg# (si41) — aVg= (s) (40)
=ri +7i + AR (s1) @1
Unind (s, a0) = arf + Vet (sern) = Vi (s) (42)
=(a—1)rf —rl + AP (). (43)

A.2.2 Extrinsic reward normalization

For each parallel worker, we maintain the running average of the extrinsic rewards 7#¥. This value is
updated in the following manner at each timestep ¢:

EefyFE+rtE.

The extrinsic rewards are then rescaled by the standard deviation of 77 across workers as shown
below:

rE 7] /Var[ }

A.2.3 Auxiliary objectives

The auxiliary objectives for each stage are listed below:

» Max-stage: We train the extrinsic policy 7g to maximize Jg (7 g) using PPO as shown below:

) 7TE(CL|S) 7,l_olcl . WE(@‘S) ol
max E o [mln {WAEE (&a),chp(m, 1—e1+€A (s, a)}], (44)

where 7T01d denotes the extrinsic policy that collects trajectories at the current iteration.
* Min-stage: We train the mixed policy 7 g ; to maximize Jg4 (7 g4 1) using PPO as shown below:
. T als old . old
max E o, [mln {MAEZTII (s,a),clip( ﬁ;lg : ; 1—¢€l1+ 5)“@2—? (s Q)H , (45)

TE+I (])Eli- (als) Tpyr

where ﬂ'%‘ﬂr ; denotes the mixed policy that collects trajectories at the current iteration.
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A.2.4 Overall objective

In summary, we outline all the primary objectives Egs. 36 and 37 and auxiliary objectives Eqs. 44
and 45 as follows:
A~ old old
JE+1(TE1r) = max E o [min {%WUQEX(S, a), clip(%w, 1—61+ €)Unix(s, a)H
. T (als) T (als)

TE+I

7 _ old T‘-E(a’| ) 7"%11 . 7.(.E(als) . W%dJrI
Je(ng) = E7TE+III11I1{ T als )Umm (S7a)7Chp(7W°Eli1(a|5) A —e1+e)U 5 (s,a)}
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The overall objectives optimized in both stages is summarized as follows:

max Jpi1(mpir) + JE8(7E) (Max-stage) (46)
TE+I,TE

max Jg(rg) + JE+I(7TE+]) (Min-stage) 47
TE+I,TE

Clipping the derivative of & The derivative of a, da (see Section 3.3), is clipped to be within
(—€a, €a), Where €, is a non-negative constant.

Codebase We implemented our method and each baseline on top of the r1pyt”® codebase. We
thank Adam Stooke and the r1pyt team for their excellent work producing this codebase.

Summary We outline the steps of our method in Algorithm 2.

Algorithm 2 Detailed Extrinsic-Intrinsic Policy Optimization (EIPO)

. Initialize policies 7z and 7 and value functions VEE rand V7
2: Setmax_stage[0] <« False, and J[0] < 0

3: fori=1--- do > ¢ denotes iteration index
4: if max_stage[i - 1] then > Max-stage: rollout by mg and update Ty 1
5: Collect trajectories 7g using 7g
6: Update mg4; and g by Eq. 46
7: Update V27 (see [26])
8: J[i](ﬁjgv_i_j(ﬂE_;_])*aJE(ﬂE)
9: max_stage[i] « J[i] — J[i —1] <0
10: else > Min-stage: rollout by 7 and update 7
11: Collect trajectories Tg 1 using Tg4 s
12: Update 7g4; and g by Eq. 47
13: Update Vgi}'l (see [26])
14: J[Z‘]%J%_F](WE—FI)*OZJE(?TE)
15: max_stage[i] « J[i] — J[i —1] >0
16: end if
17: ifmax_stage[i - 1] = True and max_stage[i] = False then
18: Update o (Eq. 32) > Update when the max-stage is done
19: end if
20: end for

A.2.5 Models

Network architecture Let Conv2D(ic, oc, k, s, p) be a2D convolutional neural network
layer with ic input channels, oc output channels, kernel size k, stride size s, and padding p. Let

“https://github.com/astooke/rlpyt
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Table 2: PPO Hyperparameters

Name Value
Num. parallel workers 128
Num. minibatches of PPO 4
Trajectory length of each worker 128
Learning rate of policy/value function | 0.0001
Discount ~ 0.99
Value loss weight 1.0
Gradient norm bound 1.0
GAE A 0.95
Num. PPO epochs 4
Clipping ratio 0.1
Entropy loss weight 0.001
Max episode steps 27000

Table 3: RND Hyperparameters

Name Value
Drop probability 0.25
Intrinsic reward scaling A 1.0
Learning rate 0.0001

LSTM(n, m) and MLP(n, m) be along-short term memory layer and a multi-layer perceptron (MLP)
with n-dimensional inputs and m-dimensional outputs, respectively.

For policies and value functions, the CNN backbone is implemented as two CNN layers,
Conv2D(1, 16, 8, 4, 0) and Conv2D(16, 32, 4, 2, 1), followed by an LSTM Iayer,

TE+I

LSTM($CNN_QUTPUT_SIZE, 512). The policies mg; and g1, and the value functions VE+I
and Vg _’i}” have separate MLPs that take the LSTM outputs as inputs. Each policy MLP is MLP (512,
|A]), and each value function MLP is MLP (512, 1).

For the prediction networks and target networks in RND, we use a model architecture with three CNN
layers followed by three MLP layers. The CNN layers are defined as follows: Conv2D(1, 32, 8, 4,
0), Conv2D(32, 64, 4, 2, 0),and Conv2D(64, 64, 3, 1, 0), with LeakyReLU activations
in between each layer. The MLP layers are defined as follows: MLP(7*7*64, 512), MLP(512,
512), and MLP (512, 512), with ReLU activations in between each layer.

Hyperparameters The hyperparameters for PPO, RND, and EIPO are listed in Table 2, Table 3,
and Table 4, respectively.

A.3 Environment details
Pycolab

* State space S: R3*84X84 5 5 5 cropped top-down view of the agent’s surroundings, scaled
to an 84 x 84 RGB image (see the code in the supplementary materials for details).

« Action space .A: {UP, DOWN, LEFT, RIGHT, NO ACTION}.

¢ Extrinsic reward function R g: See section 4.1.

ATARI

Table 4: EIPO Hyperparameters

Name Value
Initial o 0.5

Step size 5 of « 0.005
Clipping range of da (—€,,€4) | 0.05
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* State space S: R1*84%84 84 x 84 gray images.
* Action space .A: Depends on the environment.
* Extrinsic reward function R : Depends on the environment.

A.4 Evaluation details
A.4.1 Training length

We determine the training lengths of each method based on the the number frame that EO and RND
require for convergence (i.e., the performances stop increasing and the learning curve plateaus).
For most ATARI games, we train each method for 3000 iterations where each iteration consists of
128 * 128 frames and thus in total for 49152000 frames. Except for Montezuma’s Revenge, we
train 6000 iterations.

For Pycolab, we train each method for 1563 iterations where each iteration consists of 64 * 500
frames and thus 50, 000, 000 frames.

A.4.2 Probability of improvement

We validate whether EIPO prevents the possible performance degradation introduced by intrinsic
rewards, and consistently either improves or matches the performance of PPO in 61 ATARI games. As
our goal is to investigate if an algorithm generally performs better than PPO instead of the performance
gain, we evaluate each algorithm using the “probability of improvement" metric suggested in [21].
We ran at least 5 random seeds for each method in each environment, collecting the median extrinsic
returns within the last 100 episodes and calculating the probability of improvements P(X > PPO) *
with 95%-confidence interval against PPO for each algorithm X . The confidence interval is estimated
using the bootstrapping method. The probability of improvement is defined as:

1 NN 171'1' Z yj
i=1 j=1 e ’

where x; and y; denote the samples of median of extrinsic return trials of algorithms X and Y,
respectively.

We also define strict probability of improvement to measure how an algorithm dominate others:

| NN 1@ > yj
P(X>Y)ZWZZS($“Z/3% S(llay]): %axl:y7
i=1 j=1 0,z; <uyj,

A.4.3 Normalized score

In addition, we report the PPO-normalized score [21] to validate whether EIPO preserves the
performance gain granted by RND when applicable. Let px be the distribution of median extrinsic
returns over the last 100 episodes of training for an algorithm X . Defining pppo as the distribution of
mean extrinsic returns in the last 100 episodes of training for PPO, and py.,q as the average extrinsic
PX — Prand

return of a random policy, then the PPO-normalized score of algorithm X is defined as: .
PPPO — Prand

A.4.4 ) tuning

Table 5 lists the A values used in Section 4.3.

A.5 RND-dominating games

Table A.5 shows that the mean and median PPO-normalized score of each method with 95%-
confidence interval in the set of games where RND performs better than PPO.

The set of games where RND performs better than PPO are listed below:

*Note that Agarwal et al. [21] define probability of improvements as P(X > Y') while we adapt it to
P(X >Y) as we measure the likelihood an algorithm X can match or exceed an algorithm Y.
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Table 5: Tuned A value for each environment

B T [ rB < T [ rE Xl [ rE > Ml [ 7B > !
Enduro 38800 600 388 50 0.1
Jamesbond 2000 50 23 0.25 0.1
StarGunner 600 15 6.33 0.1 0.05
TimePilot 500 15 5 0.25 0.1
YarsRevenge 3000 50 30 5 0.1
Venture 500 50 5 0.5 0.05

Table 6: EIPO exhibits higher performance gains than RND in the games where RND is better than
PPO. Despite being slightly below RND in terms of median score, EIPO attains the highest median
among baselines other than RND.
PPO-normalized score
Mean (CI) Median (CI)
RND 384.57  (85.57,756.69) | 1.22 (1.17,1.26)

Ext-norm RND | 427.08 (86.53,851.52) | 1.05 (1.02,1.14)

Decay-RND 383.83  (84.19,753.17) | 1.04 (1.01,1.11)
Decoupled-RND | 1.54 (1.09, 2.12) 1.00 (0.96, 1.06)

EIPO-RND 435.56 (109.45,874.88) | 1.13  (1.06, 1.23)

Algorithm

* AirRaid

* Alien

* Assault

* Asteroids

* BankHeist

* Berzerk

* Bowling

* Boxing

* Breakout

¢ Carnival

* Centipede

* ChopperCommand
* DemonAttack
* DoubleDunk

* FishingDerby
* Frostbite

* Gopher

* Hero

* Kangaroo

* KungFuMaster
* MontezumaRevenge
* MsPacman

* Phoenix

* Pooyan

* Riverraid

* RoadRunner

* Spacelnvaders
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-1.0

% of games A = B in all Atari games

ORI 48.3% 40.0% 36.7% 45.0% 31.7% 0.9

R[N 51.7% PKJeNeFA 35.0% 43.3%
EN RINEZMNTWAZN 100.0% LS

D)@ 65.0% 56.7% 60.0%

Algorithm A

[DIOll 56.7% 60.0% 46.7% 43.3%

[ON[§&f 70.0% 65.0% 58.3% 65.0%

= > O

Algorithm B

Figure 5: EIPO-RND performs better than PPO and all the other baselines in a majority of ATARI
games.

* Tutankham
* UpNDown

e Venture

A.6 Scores for each ATARI game

The mean scores for each method on all ATARI games are presented in Table 7.

A.7 Complete comparison

In addition, Fig. 5 shows the percentage of ATARI games in which one method matches or exceeds the
performance of another method with a pairwise comparison. Note that “percentage of games A > B"
R(A, B) is not equivalent to probability of improvements P(A > B). Let 114 be the mean score of

algorithm A over 5 random seeds in an environment. R(A, B) is defined as: R(A, B) = %
where N denotes the number of ATARI games. The last row of Fig. 5 shows that EIPO performs
better than all the baselines in the majority of games (i.e., R(EIPO, B) > 0.5).

A.8 Complete learning curves

We present the learning curves of each method in Figure 6, and the evolution of « in EIPO in Figure 7
on all ATARI games.

A.9 Comparison with Noisy neural network exploration

In Figure 8, we also compare against the noisy network for exploration [22], an exploration strategy
that was shown to perform better than e-greedy [11] for deep Q-network [17]. Our method exhibits
a higher strict and non-strict probability of improvements over the noisy network. Also, it can be
seen that the noisy network does not consistently improve PPO, which mismatches the observation
made in Fortunato et al. [22]. We hypothesize that the noisy network is not applicable in on-policy
methods like PPO and hence degrades the performance since noisy networks turn sampled trajectories
off-policy samples. Noisy networks collect trajectories using a policy network with perturbed weights.
Trajectories sampled from perturbed networks cannot be counted as on-policy samples for the
unperturbed policy network.
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EO RND Ext-norm RND  Decay-RND  Decouple-RND  Ours
Adventure 0.0 0.0 0.0 0.0 0.0 0.0
AirRaid 346932 422199 36462.4 36444.7 30356.4 50418.2
Alien 1891.0 24349 2152.1 2148.3 2386.9 2536.7
Amidar 1053.4 1037.0 736.4 909.5 987.1 901.3
Assault 8131.9 10592.2 10985.1 9504.3 8404.5 10771.1
Asterix 14313.0 14112.9 16872.5 20078.0 11292.2 12471.8
Asteroids 1360.9 1431.1 1433.8 1385.0 1426.7 1389.4
BankHeist 1336.3 1345.1 1339.0 1346.0 1334.8 1333.2
BattleZone 83826.0 471280  72117.0 61939.0 59461.7 87478.0
BeamRider 7278.7 7085.1 7460.0 7802.5 72154 7854.6
Berzerk 1113.8 1478.5 1459.0 1455.9 1196.4 1426.6
Bowling 17.4 14.6 26.0 32.6 19.0 52.3
Boxing 79.5 79.9 79.9 60.3 1.9 79.5
Breakout 565.7 658.6 570.6 545.7 479.3 529.5
Carnival 5019.3 5052.9 4513.4 4790.8 4964.7 5534.3
Centipede 5938.2 6444.4 6832.3 6860.0 6675.3 6460.8
ChopperCommand 8225.1 9465.9 8629.8 8559.0 6649.7 8008.4
CrazyClimber 151202.6 147676.5 135970.3 140333.9 138956.7 137036.7
DemonAttack 5678.8 7070.2 9039.0 6707.0 8990.1 9984.4
DoubleDunk -1.3 18.0 -1.1 -1.0 -1.0 -1.9
ElevatorAction 45703.7 97717.6 12121.4 19250.5 42557.3 48303.7
Enduro 1024.7 797.5 815.0 1095.9 677.7 1092.6
FishingDerby 353 47.8 28.9 36.3 36.7 37.5
Freeway 31.1 25.8 334 334 33.1 333
Frostbite 1011.3 34453 1731.4 3368.2 2115.2 5289.6
Gopher 5544.2 13035.8 2859.6 11034.9 9964.6 4928.8
Gravitar 1682.2 1089.8 1874.1 1437.0 12534 1921.1
Hero 29883.7 36850.3 26781.2 298424 33889.1 36101.3
IceHockey 6.0 4.4 8.7 6.9 9.9 104
Jamesbond 13415.9 3971.6 134744 123224 14995.6 15352.0
JourneyEscape -429.7 -1035.0 -663.7 -413.2 -327.8 -309.3
Kaboom 1883.5 1592.5 1866.6 1860.8 1830.7 1852.3
Kangaroo 6092.4 8058.9 8293.4 9361.9 12043.3 10150.8
Krull 9874.1 8199.4 9921.4 9832.0 9551.3 10006.2
KungFuMaster 47266.5 66954.2 489445 47403.2 45666.8 48329.4
MontezumaRevenge 0.2 2280.0 2500.0 2217.0 0.0 2485.0
MsPacman 4996.9 5326.6 5289.7 4792.5 4325.0 4767.4
NameThisGame 11127.7 10596.1 10300.7 11831.5 11918.0 11294.9
Phoenix 8265.0 10537.9 10922.9 11494.5 17960.8 16344.1
Pitfall 0.0 -2.7 -6.1 -0.6 -1.5 -0.3
Pong 20.9 20.9 20.9 20.9 20.9 20.9
Pooyan 5773.4 7535.8 5508.7 5430.9 4834.7 5924.6
PrivateEye 97.5 86.0 114.9 98.8 99.7 99.5
Qbert 23863.8 16530.9 22387.8 224433 22289.5 22750.7
Riverraid 10231.3 11073.6 11700.4 13365.7 13285.1 14978.4
RoadRunner 45922.6 465184  58777.7 44684.2 42694.3 58708.8
Robotank 37.4 249 38.5 40.1 40.7 40.9
Seaquest 1453.9 1128.6 1986.0 1426.6 1821.5 1838.3
Skiing -12243.3  -14780.8  -11594.8 -11093.5 -8986.6 -9238.4
Solaris 2357.7 2006.5 2120.9 2251.7 2751.0 2572.0
Spacelnvaders 1621.0 1871.4 1495.3 1692.0 1375.7 1637.6
StarGunner 21036.0 16394.9 16884.7 32325.8 42299.5 50798.5
Tennis -0.1 -4.7 4.6 -0.1 -8.2 -0.1
TimePilot 19544.5 9180.5 21409.4 20034.2 19223.8 21039.8
Tutankham 199.9 235.3 230.6 214.0 216.1 231.8
UpNDown 276884.8 317426.2 310520.6 266774.5 290323.4 294218.8
Venture 102.1 1149.7 1348.6 1451.8 1438.8 1146.3
VideoPinball 360562.5 327741.8 350534.3 406508.8 389578.5 392005.7
WizardOfWor 11912.8 9580.3 11845.2 11751.7 10732.7 12512.8
YarsRevenge 92555.9 73411.4 85851.9 77850.0 124983.6 149710.8
Zaxxon 14418.2 11801.9 11779.6 15085.5 16813.3 12713.3

Table 7: The mean scores of each method in 61 ATARI games.
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Figure 6: Game score for each baseline on 60 ATARI games. Each curve represents the average score
across at least 5 random seeds. In all games, we either match or outperform PPO. In a large majority
of games, we either match or outperform RND. In a handful of games, our method does significantly
better than both PPO and RND (Star Gunner, Bowling, Yars Revenge, Phoenix, Seaquest).
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Figure 7: The evolution of « in EIPO on all 61 ATARI environments. The variance in « trajectories
across environments supports the hypothesis that decaying the intrinsic reward is difficult to hand-
tune, and may not always be the best strategy.
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Figure 8: (a) EIPO-RND (ours) has a higher probability of improvement P(EIPO-RND > EO) over
EO than all other baselines. Surprisingly, the noisy network for exploration (Noisy) [22] does not
consistently improve the performance of PPO (EO) even though Taiga et al. [11] showed that noisy
network improves e-greedy exploration strategy used in deep Q-network (DQN). (b) Probability of
improvement P(EIPO-RND > B) > 0.5 VB indicates that EIPO-RND performs strictly better than
the baselines in the majority of trials. Notably, EIPO-RND also outperforms Noisy, which is shown
to be consistently better than extrinsic-reward-only exploration strategies (e.g., e-greedy).
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Al10 ICM

In addition to RND, we test our method on ICM [8] - another popular bonus-based exploration
method. The learning curves on 6 ATARI environments can be seen in Fig. 9.

A.11 MuJoCo results

We present the experimental results of EIPO and other baselines on MuJoCo [27] in Figure 10. It can
be seen that our method exceeds or matches PPO in most tasks. However, as the reward function of
MuJoCo are often dense, there is no visble difference between RND and PPO.

A.12 Related Work

Reward design. Our work is related to the paradigm of reward design. Mericli et al. [28] uses
genetic programming to optimize the reward function for robot soccer. Sorg et al. [29] learns a reward
function for planning via gradient ascent on the expected return of a tree search planning algorithm
(e.g., Monte Carlo Tree Search). Guo et al. [30] extends [29] using deep learning, improving tree
search performance in ATARI games. The work [31] learns a reward function to improve the
performance of model-free RL algorithms by performing policy gradient updates on the reward
function. Zheng et al. [32] takes a meta-learning approach to learn a reward function that improves
an RL algorithm’s sample efficiency in unseen environments. Hu et al. [33] learns a weighting
function that scales the given shaping rewards [23] at each state and action. These lines of work are
complimentary to EIPO, which is agnostic to the choice of intrinsic reward and could be used in
tandem with a learned reward function.

Multi-objective reinforcement learning. The problem of balancing intrinsic and extrinsic rewards
is related to multi-objective reinforcement learning (MORL) [34—37] since both optimize a policy
with the linear combination of two or multiple rewards. Chen et al. [34] learns a meta-policy that
jointly optimizes all the objectives and adapts to each objective by fine-tuning the meta-policy. Ultes
et al. [36] search for the desired weighting between dialog length and success rate in conversation Al
system using Bayesian optimization. Abels et al. [38], Yang et al. [37] make the policy conditional
on the preference of each reward and train the policy using the weighted rewards. However, MORL
approaches could not resolve the issue of intrinsic rewards bias in our problem setting since intrinsic
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Figure 9: EIPO-ICM successfully matches ICM when it outperforms PPO, and closes the gap
with PPO when ICM under-performs in some games. Note that we use the same « (Section 3.1)
and 3 (Section 3.1) used in RND in this experiments. This suggests that even without tuning
hyperparameters for ICM, EIPO is effective in some games. For instance, in Kaboom, the screen
flashes a rapid sequence of bright colors when the agent dies, causing ICM to generate high intrinsic
reward at these states. Even in such games where the intrinsic and extrinsic reward signals are
misaligned, our method is able to shrink the performance gap. In extreme cases where the intrinsic
and extrinsic rewards are steeply misaligned (Enduro), our methods inability to completely turn off
the effects of intrinsic rewards results in subpar performance. On the same environment however, we
see that RND does perform well (Fig. 6). This implies that we need more investigation to uncover the
relationship between EIPO and intrinsic rewards functions.
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Figure 10: EIPO matches RND and PPO in all tasks in terms of the final performance. RND and
PPO do not have visible difference since the reward functions in MuJoCo are often dense.

rewards are non-stationary and change over the training time, yet MORL approaches require the
reward functions to be fixed. Also, MORL is aimed at learning a Pareto-optimal policy that satisfies
all the objectives, but intrinsic rewards are just auxiliary training signals, and thus, we do not require
maximizing intrinsic rewards.
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