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Abstract— Deep reinforcement learning (DRL) has been
demonstrated to provide promising results in several challeng-
ing decision making and control tasks. However, the required
inference costs of deep neural networks (DNNs) could prevent
DRL from being applied to mobile robots which cannot afford
high energy-consuming computations. To enable DRL methods
to be affordable in such energy-limited platforms, we propose
an asymmetric architecture that reduces the overall inference
costs via switching between a computationally expensive policy
and an economic one. The experimental results evaluated on a
number of representative benchmark suites for robotic control
tasks demonstrate that our method is able to reduce the
inference costs while retaining the agent’s overall performance.

I. INTRODUCTION

Recent works have combined reinforcement learning (RL)
with the advances of deep neural networks (DNNs) to make
breakthroughs in domains ranging from games [1]–[3] to
robotic control [4]–[6]. However, the inference phase of
a DNN model is a computationally-intensive process [7],
[8] and is one of the major concerns when applied to
mobile robots, which are mostly battery-powered and have
limitations on the energy budgets. Although the energy
consumption of DNNs could be alleviated by reducing their
sizes for energy-limited platforms, smaller DNNs are usually
not able to attain same or comparable levels of performances
as larger ones in complex scenarios. On the other hand, the
performances of smaller DNNs may still be acceptable in
some cases. For example, a small DNN unable to perform
complex steering control is still sufficient to handle simple
and straight roads. Motivated by this observation, we propose
an asymmetric architecture that selects a small DNN to act
when conditions are acceptable, while employing a large one
when necessary.

We implement this cost-efficient asymmetric architecture
via leveraging the concept from hierarchical reinforcement
learning (HRL) [9], which consists of a master policy
and two sub-policies. The master policy is designed as a
lightweight DNN for decision-making, which takes in a state
as its input and learns to choose a sub-policy based on the
input state. The two sub-policies are separately implemented
as a large DNN and a small DNN. The former is designed to
deal with complicated state-action mapping, while the latter
is responsible for handling simple scenarios. Therefore, when
complex action control is required, the master policy uses
the former. Otherwise, the latter is selected. To achieve the
objective of cost-aware control, we propose a loss function
design such that the inference costs of executing the two sub-

policies are taken into consideration by the master policy.
The master policy is required to learn to use the sub-
policy with a small DNN as frequently as possible while
maximizing and maintaining the agent’s overall performance.

Our principal contribution is an asymmetric RL archi-
tecture that reduces the deployment-time inference costs.
To validate the proposed architecture, we perform a set of
experiments on the representative robotic control tasks from
the OpenAI Gym Benchmark Suite [10] and the DeepMind
Control Suite [11]. The results show that the master policy
trained by our methodology is able to alternate between the
two sub-policies to save inference costs in terms of floating-
point operations (FLOPs) with little performance drop. We
further provide an in-depth look into the behaviors of the
trained master policies, and quantitatively and qualitatively
discuss why the computational costs can be reduced. Finally,
we offer a set of ablation analyses to validate the design
decisions of our cost-aware methodology.

II. RELATED WORK

A number of knowledge distillation based methods have
been proposed in the literature to reduce the inference costs
of DRL agents at the deployment time [12]–[15]. These
methods typically use a large teacher network to teach a
small student network such that the latter is able to mimic
the behaviors of the former. In contrast, our asymmetric
approach is based on the concept of HRL [9], a framework
consisting of a policy over sub-policies and a number of
sub-policies for executing temporally extended actions to
solve sub-tasks. Previous HRL works [16]–[24] have been
concentrating on using temporal abstraction to deal with
difficult long-horizon problems. As opposed to those prior
works, our proposed method focuses on employing HRL to
reduce the inference costs of an RL agent. Please note that
the theme and objective of the paper is to propose a new
direction of HRL to a practical problem in robot deployment
scenarios, not a more general HRL strategy.

III. BACKGROUND

A. Reinforcement Learning

We consider the standard RL setup where an agent in-
teracts with an environment E over a number of discrete
timesteps, where the interaction is modeled as a Markov
Decision Process (MDP). At each timestep t, the agent
observes a state st from a state space S, and performs an
action at from an action space A according to its policy π,
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Fig. 1: An illustration of the workflow of our frame-
work. The master policy πΩ chooses a sub-policy πω ∈
{πωsmall , πωlarge}, and uses it to interact with the envi-
ronment E for nω timesteps. After this, πΩ chooses an-
other πω , and the process repeats until the end of the
episode. πΩ and πω use different experience transitions
to update their policies and have different replay buffers,
while πωsmall and πωlarge share the same replay buffer.
We train πωsmall and πωlarge with experience transitions
(st, at, rt, st+1) for t = 0, 1, ..., etc, and train πΩ with
transitions (st, ωt, rΩt , st+nω ) for t = 0, nω, ..., etc. The
reward rΩt = Σt+nω−1

i=t ri − λnωcωt of πΩ is the sum of
rewards ri collected by πω , which is penalized by the scaled
cost λnωcωt of πω . Note that λ is a scaling parameter.

where π is a mapping function represented as π : S → P (A).
The agent then receives the next state st+1 ∈ S and a reward
signal rt from E . The process continues until a termination
condition is met. The objective of the agent is to maximize
the expected cumulative return E[Rt] = E[Σ∞k=0γ

krt+k]
from E for each timestep t, where γ ∈ (0, 1] is a discount
factor.

B. Hierarchical Reinforcement Learning

HRL introduces the concept of ‘options’ into the RL
framework, where options are temporally extended actions.
[9] shows that an MDP combined with options becomes a
Semi-Markov Decision Process (SMDP). Assume that there
exists a set of options Ω. HRL allows a ‘policy over options’
πΩ to determine an option for execution for a certain amount
of time. Each option ω ∈ Ω consists of three components
(Iω, πω, βω), in which Iω ⊆ S is an initial set according to
πΩ, πω is a policy following option ω, and βω : S → [0, 1] is
a termination function. When an agent enters a state s ∈ Iω ,
option ω is adopted, and policy πω is followed until a state
sk where βω(sk) → 1. In episodic tasks, termination of an
episode also terminates the current option. Our architecture
is a special case of SMDP. Section IV introduces our update
rules for πΩ and πω . In this paper, we refer to a ‘policy over
options’ as a master policy, and an ‘option’ as a sub-policy.

IV. METHODOLOGY

A. Problem Formulation

The main objective of this research is to develop a cost-
aware strategy such that an agent trained by our methodology
is able to deliver satisfying performance while reducing its

overall inference costs. We formulate the problem as an
SMDP, with an aim to train the master policy in the proposed
framework to use the smaller sub-policy when the condition
is appropriate to be handled by it, and employ the larger
sub-policy when the agent requires complex control of its
actions. The agent is expected to use the smaller sub-policy
as often as possible to reduce its computational costs. In
order to incorporate the consideration of inference costs into
our cost-aware strategy, we further assume that each sub-
policy is cost-bounded. The cost of a sub-policy is denoted as
cω , where ω represents the sub-policy used by the agent. The
reward function is designed such that the agent is encouraged
to select the lightweight sub-policy as frequently as possible
to avoid being penalized.

B. Overview of the Cost-Aware Framework

In order to address the problem formulated above, we
employ an HRL framework consisting of a master policy
πΩ and two sub-policies πω of different DNN sizes, where
ω ∈ {ωsmall, ωlarge} and the DNN size of ωlarge is larger
than that of ωsmall. We assume that both the sub-policies
πω can be completed in a single timestep. At the beginning
of a task, πΩ first takes in the current state s ∈ S from
E to determine which πω to use. The selected πω is then
used to interact with E for nω timesteps, i.e., βω → 1
once the selected sub-policy ω is used for nω timesteps.
The value of nω is set to be a constant for the two sub-
policies, i.e., nωlarge = nωsmall . The process repeats until
the end of the episode. The workflow of the proposed
cost-aware hierarchical framework is illustrated in Fig. 1.
Please note that even though the overall system is formulated
as an SMDP, the formulation for πΩ is still a standard
MDP problem of selecting between a set of two temporally
extended actions (i.e., using either πωsmall or πωlarge), as
described in Section 3 of [9]. Therefore, at timestep t, the
goal of πΩ becomes maximizing RΩt = Σ∞i=0γ

irΩt+i·nω
,

where rΩt = Σt+nω−1
j=t rj is the cumulative rewards during

the execution of πω . On the other hand, the update rule of
πω is the same as the intra-option policy gradient described
in [17]. To deal with the data imbalance issue of the two
sub-policies during the training phase as well as improving
data efficiency, our cost-aware framework uses an off-policy
RL algorithm for πω so as to allow πωsmall and πωlarge to
share the common experience replay buffer.

C. Cost-Aware Training

We next describe the training methodology. In case that no
regularization is applied, πΩ tends to choose πωlarge due to
its inherent advantages of being able to obtain more rewards
on its own. As a result, we penalize πΩ with cω to encourage
it to choose πωsmall with a lower cω . The reward for πΩ at t
is thus modified to rt−λcω , where λ is a cost coefficient for
scaling. The higher the value of λ is, the more likely πΩ will
choose πωsmall . The experience transitions used to update
πΩ are therefore expressed as (st, ωt, rΩt , st+nω ) for t = 0,
nω, 2nω, ..., etc, where rΩt = Σt+nω−1

i=t ri − λnωcωt .



TABLE I: The detailed settings of the hyperparameters
adopted by the master policy πΩ and the sub-policies πω
of our methodology.

Hyperparameter Value Hyperparameter Value

Master Policy πΩ Sub-Policy πω

RL algorithm DQN RL algorithm SAC
Learning rate 1e−3 Entropy coefficient α Auto
Discount factor (γ) 0.99 Learning rate of agent 3e−4
Replay buffer size 50K Discount factor (γ) 0.99
Exploration fraction 10% Replay buffer size 1M
Update batch size 32 Update batch size 256
Double Q True Train frequency 1
Train frequency 1 Target soft update coefficient τ 0.005
Target network update interval 500 Target network update interval 1
Optimization for the RL agent Adam Optimization for the RL agent Adam
Training timesteps 2.5M Training timesteps 2.5M
Nonlinearity Tanh Nonlinearity Tanh

TABLE II: Number of neurons nunits per layer for πωsmall
& πωlarge , cωsmall , cωlarge , and λ for each robotic control
tasks.

Environment nunits for πωsmall nunits for πωlarge cωsmall cωlarge λ

MountainCarContinuous-v0 8 64 1.0 44.7 1e−4
Swimmer-v3 8 256 1.0 428.4 1e−4

Ant-v3 64 256 1.0 8.0 1e−1
FetchPickAndPlace-v1 32 128 1.0 9.4 2e−4

walker-stand 8 64 1.0 18.1 1e−2
finger-spin 8 64 1.0 29.1 1e−2

V. EXPERIMENTAL RESULTS

A. Experimental Setup

1) Environments: We verify the proposed methodology in
simple classic control tasks from the OpenAI Gym Bench-
mark Suite [10], and a number of challenging continuous
control tasks from both the OpenAI Gym Benchmark Suite
and the DeepMind Control Suite [11] simulated by the Mu-
JoCo [25] physics engine. The challenging tasks include four
continuous control tasks from the OpenAI Gym Benchmark
Suite, and two tasks from the DeepMind Control Suite.

2) Hyperparameters: In our experiments, the master pol-
icy πΩ is implemented as a Deep Q-Network (DQN) [1]
agent to discretely choose between the two sub-policies. On
the other hand, the sub-policies πω are implemented as Soft
Actor-Critic (SAC) [5] agents for performing the continuous
control tasks described above. The hyperparameters used
for training are shown in Table I. Both πΩ and πω are
implemented as multilayer perceptrons (MLPs) with two
hidden layers. We set the number of units nunits per layer
for πΩ to 32 for all tasks, and determine nunits for πω as
follows. We first train a model with nunits set to 512 as
the criterion model, and then find the minimum nunits for
the model which can achieve 90% of the performance of the
criterion model. We use this as nunits for πωlarge . And then
we find nunits for πωsmall , such that its value is less than or
equal to 1/4 of nunits for πωlarge and the performance of
πωsmall is around or below 1/3 of the score achieved by the
criterion model.

For the cost term, we adopt the inference FLOPs of πω
as cω , since the FLOPs executed by πω and its energy
consumption are correlated. We use the number of FLOPs
of πωsmall and πωlarge divided by the number of FLOPs of
πωsmall as their policy costs cωsmall and cωlarge , respectively,

Fig. 2: Performance of the models trained with different λ.
The scores are averaged from 5 different random seeds. Each
model trained with different random seed is evaluated over
200 episodes.

Fig. 3: Performance of models trained with different nω . The
scores are averaged from 5 different random seeds. Each
model trained with different random seed is evaluated over
200 episodes.

such that cωsmall is equal to one. With regard to λ, from
Fig. 2, we observe that λ and the ratio of choosing πωlarge is
negatively correlated. Even though the performances decline
along with the reduced usage rate of πωlarge , there is often
a range of λ which leads to lower usage rate of πωlarge and
yet comparable performance to the model of high πωlarge
usage rate. We perform a hyperparameter search to find an
appropriate λ, such that both πωsmall and πωlarge are used
alternately within an episode, while allowing the agent to
obtain high scores. The hyperparameters used in the cost
term are listed in Table II.

We also do hyperparameter searches to find nω . It can
be observed from Fig. 3 that there is no obvious correlation
between nω and the performance. Swimmer-v3 performs well
with smaller values of nω , while walker-stand performs well
with larger values of nω . On the other hand, Ant-v3 performs
well with nω equal to around 10. Therefore, the choice of
nω is relatively non-straightforward. We select the value of
nω on account of two considerations: (1) nω should not be
too small, or it will lead to increased master policy costs due
to more frequent inferences of the master policy to decide
which sub-policy to be used next; (2) nω should not be too
large, otherwise the model will not be able to perform flexible
switching between sub-policies. As a result, we set nω to
five for all of the experiments considered in this work as a
compromise. However, please note that an adaptive scheme
of the step size nω may potentially further enhance the
overall performance, and is left as a future research direction.



For FetchPickAndPlace-v1, we train the model with hind-
sight experience replay (HER) [26] to improve the sample
efficiency. For most of the results, the default training
and evaluation lengths are set to 2.5M timesteps and 200
episodes, respectively. The agents are implemented based
on the source codes from Stable Baselines [27] as well as
RL Baselines Zoo [28], and are trained using five different
random seeds.

3) Baselines: The baselines considered include two cate-
gories: (1) a typical RL method, and (2) distillation methods.

Typical RL method. To study the performance drop and
the cost reduction compared with standard RL methods,
we train two policies of different sizes (i.e., numbers of
DNN parameters), where the small one and the large one
are denoted as πS−only and πL−only respectively. The sizes
of πS−only and πL−only correspond to πωsmall and πωlarge
used in our method. Both πS−only and πL−only are trained
independently from scratch as typical RL methods without
the use of πΩ.

Distillation methods. In order to study the effectiveness
on cost reduction, we compare our methodology with a
commonly used method in RL: policy distillation. Two policy
distillation approaches are considered in our experiments:
Behavior Cloning (BC) [29] and Generative Adversarial
Imitation Learning (GAIL) [30]. For these baselines, a costly
policy (i.e., the large policy) serves as the teacher model
that distills its policy to an economic policy (i.e., the small
policy). In our experiments, the teacher network is set to
πL−only, while the configurations of the student networks
are described in Section V-D. Please note that these baselines
require more training data than the typical RL method
baselines and our methodology, since they need data samples
from expert (i.e., πL−only) trajectories for training their
student networks.

B. Qualitative Analysis of the Learned Behaviors

We first illustrate a number of motivating timeline plots to
qualitatively demonstrate that a control task can be handled
by different sub-policies πω during different circumstances.

Swimmer-v3. Fig. 4 illustrates the decisions of the master
policy πΩ, where the interleavedly plotted white and yellow
dots along the timeline correspond to the execution of sub-
policies πωsmall and πωlarge , respectively. In this task, a
swimmer robot is expected to first perform a stroke and then
maintain a proper posture so as to drift for a longer distance.
It is observed that the model trained by our methodology
tends to use πωlarge while performing strokes and πωsmall
to maintain its posture between two strokes. One reason is
that a successful stroke requires lots of delicate changes in
each joint while holding a proper posture for drifting merely
needs a few joint changes. Delicate changes in posture within
a small time interval are difficult for πωsmall since the outputs
of it tend to be smooth over temporally neighboring states.

MountainCarContinuous-v0. The objective of the car is
to reach the flag at the top of the hill on the right-hand side.
In order to reach the goal, the car has to accelerate forward
and backward and then stop acceleration at the top. Fig. 5a
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Fig. 4: A timeline for illustrating the sub-policies used
for different circumstances in Swimmer-v3, where the inter-
leavedly plotted white and yellow dots along the timeline
correspond to the sub-policies πωsmall and πωlarge , respec-
tively. The master policy πΩ selects πωlarge when performing
strokes, and employs πωsmall to maintain or slightly adjust
the posture of the swimmer between two strokes for drifting.
The image at the bottom shows the actions conducted by
the model. The transparent dots are actions decided by the
not selected sub-policy. The opaque and the transparent dots
reveal that actions conducted by πωlarge is more complicated
than πωsmall .

shows that πωlarge is used for adjusting the acceleration and
πωsmall is only selected when acceleration is not required.

FetchPickAndPlace-v1. The goal of the robotic arm is to
move the black object to a target position (i.e., the red ball in
Fig. 5b). In Fig. 5b, it can be observed that the agent trained
by our methodology learns to use πωsmall to approach the
object, and then switch to πωlarge to fetch and move it to
the target location. One rationale for this observation is that
fetching and moving an object entails fine-grained control
of the clipper. The need for fine-grained control inhibits
πωsmall from being selected by πΩ to fetch and move objects.
In contrast, there is no need for fine-grained control for
approaching objects. As a result, πωsmall is mostly chosen
when the arm is approaching the object to reduce the costs.

Walker-stand. The goal of the walker is to stand up and
maintain an upright torso. Fig. 5c shows that for circum-
stances when the forces applied change quickly, πωlarge is
used. For circumstances where the forces applied change
slowly, πωsmall is used. After the walker reaches a balanced
posture, it utilizes πωsmall to maintain the posture afterwards.

To summarize the above findings, πωlarge is selected when
find-grained controls (i.e., tweaking actions within a small
time interval) are necessary, and πωsmall is chosen otherwise.

C. Performance and Cost Reduction

In this section, we compare the performance and the
cost of our method with typical RL methods described in
Section V-A. Table III summarizes the performances cor-



TABLE III: A summary of the performances of πS−only, πL−only, and our method (denoted as ‘Ours’) evaluated over 200
test episodes, along with the averaged percentages of πωlarge being used by our method during an episode, as well as the
averaged percentages of reduction in FLOPs when comparing Ours (including the FLOPs from πΩ and the sub-policies)
against πL−only.

Environment πS−only πL−only Ours % using πωlarge % Total FLOPs reduction

MountainCarContinuous-v0 −11.6± 0.1 93.6± 0.1 93.5± 0.1 44.5%± 5.7% 49.0%± 5.3%
Swimmer-v3 35.5± 7.7 84.1± 18.0 108.8± 24.9 54.9%± 9.5% 44.6%± 8.3%

Ant-v3 1, 690.4± 1, 244.3 3, 927.2± 1, 602.8 3, 564.8± 1, 548.6 53.9%± 5.5% 39.3%± 7.5%
FetchPickAndPlace-v1 0.351± 0.477 0.980± 0.140 0.935± 0.255 46.5%± 3.0% 46.4%± 2.8%

walker-stand 330.0± 12.2 977.7± 22.1 967.2± 16.4 5.7%± 1.1% 82.3%± 0.9%
finger-spin 32.9± 36.9 978.0± 32.4 871.2± 24.0 55.2%± 19.7% 37.5%± 17.8%
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(a) MountainCarContinuous-v0 before contacting

contact with the object reach the goal

move the object
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(b) FetchPickAndPlace-v1
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ns try to balance its upper body slightly adjust its posture

reach a stand-up posture maintain its steady posture

(c) Walker-stand

Fig. 5: a The mountain car uses πωlarge to adjust its ac-
celeration from a negative value to a positive value, while
using πωsmall to maintain its acceleration. b The robotic arm
first approaches the object using πωsmall , and then employs
πωlarge to move the object to the target location. c The walker
first utilizes πωlarge and πωsmall alternately to stand up. After
reaching an upright posture, the walker leverages πωsmall to
maintain it afterwards.

responding to πS−only, πL−only, and our method (denoted
as ‘Ours’) in the second, third, and fourth columns, respec-
tively. Table III also summarizes the averaged percentages
of πωlarge being used by our method during an episode,
as well as the averaged percentages of reduction in FLOPs
when comparing Ours (including the FLOPs from the master
policy πΩ as well as the two sub-policies) against the
πL−only baseline.

It can be seen that in Table III, the average performance
of Ours are comparable to πL−only and significantly higher
than πS−only. It can also be observed that our method does
switch between πωsmall and πωlarge to control the agent, and
thus reduce the total cost required for solving the tasks.

To take a closer look into the behavior of the agent within

an episode, Fig. 6 illustrates the performances and costs of
our methodology over 200 episodes during evaluation for
three control tasks. Each dot plotted in Fig. 6 corresponds to
the evaluation result of Ours in an episode, where the cost of
each dot is divided by the cost of πL−only. The performance
of each dot is also scaled such that [0, 1] corresponds to
the averaged performances of a random policy and πL−only.
Please note that the scaled costs of our methodology may
exceed one since the inference costs of πΩ are considered
in our statistics as well. Histograms corresponding to the
performances and costs of the data points are provided on the
right-hand side and the top side of each figure, respectively.
For Swimmer-v3, it is observed that our methodology is
able to reduce about half of the FLOPs when compared
against πL−only. Although few data points correspond to
only half of the averaged performance of πL−only, most of
the data points are comparable and even superior to that.
For FetchPickAndPlace-v1, it can be observed that the dots
distribute evenly along the line (y=1.0), which means that the
agent can solve the tasks in the majority of episodes while the
induced costs vary largely across episodes. This phenomena
is mainly caused by the broadly varying starting positions in
different episodes. When the object is close the arm, the cost
is near 1.0 since πωlarge is used in the majority of time in
an episode, as the result shown in Section V-B. For walker-
stand, our method learns to use πωlarge in the early stages to
control the walker to stand up. After that, the agent only uses
πωsmall to slightly adjust its joints to maintain the posture
of the walker. Therefore, a significant amount of inference
costs can be saved in this task, causing the data points
to concentrate on the top-left corner of the figure. These
examples therefore validate that our cost-aware methodology
is able to provide sufficient performances while reducing the
inference costs required for completing the tasks.

D. Analysis of the Performance and the FLOPs per Inference

We compare the performances of the proposed methodol-
ogy and the baselines discussed in Section V-A.3, as well
as their FLOPs per inference (denoted as FLOPs/Inf). The
FLOPs/Inf for πL−only, Ours, and the student networks
of the baselines, as well as their corresponding highest
performances achieved are summarized in Table IV. For a
fair comparison, the sizes of the student networks of the
distillation baselines are configured such that their FLOPs/Inf
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Fig. 6: Comparison of performance and cost. Each dot corresponds to a rollout of an episode. The y-axis is scaled so that
the expert achieves 1 and a random policy achieves 0. The x-axis is also scaled such that only using πωlarge throughout an
episode corresponds to 1.

TABLE IV: An analysis of the performances and FLOPs per inference (denoted as FLOPs/Inf) for our method and the
baselines. The network sizes of πfit and the student networks of the two policy distillation baselines are configured such
that their FLOPs/Inf are approximately the same as the averaged FLOPs/Inf of Ours (denoted as Avg-FLOPs/Inf). In
MountainCarContinuous-v0, πL−only, Ours, and πfit are trained for 100k timesteps. In other control tasks, they are trained
for 2M timesteps. BC and GAIL require additional expert trajectories generated by the trained model πL−only, which consists
of 25 trajectories with 50 state-action pairs for each trajectory, as adopted in [30]. Note that the numerical results presented
in this table correspond to the score of best model selected from 5 training runs.

Environment πL−only FLOPs/Inf Ours Avg-FLOPs/Inf πfit GAIL BC FLOPs/Inf

MountainCarContinuous-v0 93.6± 0.1 8,707 93.5± 0.1 4, 440± 177 90.5± 0.1 −99.9± 0.0 93.3± 0.1 4,603
Swimmer-v3 84.1± 10.3 137,219 108.8± 15.4 76, 019± 9, 122 66.2± 10.1 63.2± 9.8 59.7± 13.8 76,763

Ant-v3 3, 927.2± 524.0 196,099 3, 564.8± 724.7 119, 032± 14, 284 2, 553.0± 511.7 −15.6± 101.0 1, 373.7± 490.2 119,451
FetchPickAndPlace-v1 0.980± 0.140 42,755 0.935± 0.247 22, 917± 2, 521 0.920± 0.271 0.078± 0.268 0.153± 0.360 23,223

walker-stand 977.7± 20.2 12,803 967.2± 16.3 2, 266± 159 819.5± 14.5 596.6± 33.9 159.1± 22.6 2,397
finger-spin 978.0± 33.0 9,859 871.2± 28.5 6, 162± 739 848.1± 27.0 536.8± 22.4 7.6± 19.5 6,303

TABLE V: Comparison of the proposed methodology with and without using the cost term cω .

With the cost term cω Without the cost term cω
Environment

Performance % using πωlarge Performance % using πωlarge

MountainCarContinuous-v0 35.5 ± 48.9 50.4% ± 5.5% 66.3 ± 40.6 59.0% ± 20.5%
Swimmer-v3 98.9 ± 23.2 65.2% ± 15.0% 71.5 ± 33.3 99.5% ± 1.1%

Ant-v3 2, 558.8 ± 1140.0 47.8% ± 15.0% 2, 625.8 ± 728.6 80.9% ± 39.2%
FetchPickAndPlace-v1 0.822 ± 0.103 51.3% ± 13.8% 0.785 ± 0.175 44.2% ± 16.0%

walker-stand 943.8 ± 23.3 19.7% ± 9.8% 961.8 ± 10.0 100.0% ± 0.0%
finger-spin 829.6 ± 54.2 38.6% ± 14.9% 907.4 ± 29.7 100.0% ± 0.0%

TABLE VI: Comparison of our methodology with and without a shared experience replay buffer.

With shared Zω Without shared Zω
Environment

Performance % using πωlarge Performance % using πωlarge

MountainCarContinuous-v0 35.5 ± 48.9 50.4% ± 5.5% 0.0 ± 0.0 59.8% ± 54.6%

Swimmer-v3 98.9 ± 23.2 65.2% ± 15.0% 61.1 ± 23.6 50.8% ± 45.8%

Ant-v3 2, 558.8 ± 1, 140.0 47.8% ± 15.0% 1, 270.1 ± 1, 331.4 23.8% ± 42.6%

FetchPickAndPlace-v1 0.822 ± 0.103 51.3% ± 13.8% 0.377 ± 0.128 63.0% ± 17.4%

Walker-stand 943.8 ± 23.3 19.7% ± 9.8% 910.1 ± 65.9 25.1% ± 31.1%

Finger-spin 829.6 ± 54.2 38.6% ± 14.9% 865.9 ± 41.8 70.7% ± 20.6%

(the last column of Table IV) are approximately the same as
the averaged FLOPs/Inf of Ours (the Avg-FLOPs/Inf column
in Table IV, including the FLOPs contributed by both the
master policy πΩ and the sub-policies). As a reference, we
additionally train a policy πfit using SAC from scratch
based on the same DNN size as the student networks of the

distillation baselines. For distillation baselines, both of them
employ the pre-trained πL−only as their teacher networks.
Then, the student networks are trained using the data sampled
from the trajectories generated by the teacher networks,
where 50 consecutive state-action pairs are sampled from
each of the generated 25 trajectories, as those adopted in [30].



The results show that for the environments in Table IV,
Ours deliver comparable performances to the πL−only base-
line and outperforms the distillation baselines, under similar
levels of FLOPs/Inf. From the perspective of data samples
used, the distillation baselines consume more data samples
(including the data samples required for training both the
teacher and the student networks) than those required by
Ours, which is trained from scratch without the need of data
samples from a pre-trained teacher network. The relatively
lower performances of the distillation baselines are probably
due to the smaller sizes of the networks compared to their
teacher networks πL−only, since the performances delivered
by πfit are also lower than the corresponding performances
of Ours. The results thus suggest that our method is able to
reduce inference costs while maintaining sufficient perfor-
mances.

E. Ablation Study

Effectiveness of the cost term. We compare the evaluation
results of our models trained with and without using the loss
term in Table V. When the cost term is removed, the main
factor that affects the decisions of πΩ is its belief in how good
each sub-policy can achieve. Since πωlarge is able to obtain
high scores on its own, it is observed that πΩ prefers to select
πωlarge . In contrast, incorporating the cost term decreases
the percentages of using πωlarge substantially, while still
allowing our model to offer satisfying performances.
Effectiveness of shared experience replay buffer. We
compare the results of our models with and without the
shared buffer across sub-policies πω in Table VI. For tasks
except finger-spin, the scores of the models without a shared
Zω are lower than those with a shared Zω . The lower scores
of the models are due to reduced data samples for each sub-
policies, since the transitions are not shared across the replay
buffers. We also observed that some of the model trained
without a shared Zω is prone to use one of its sub-policies for
the majority of time, instead of using both interleavedly. We
believe that this is caused by unbalanced training samples for
the two sub-policies. Namely, the relatively worse sub-policy
is less likely to obtain sufficient data samples to improve its
performance. While this problem can be solved by using
training algorithms with improved exploration such as [2],
we simply share Zω among πω to address this issue. The
models trained with a shared Zω have lower variances in
the choice of the two sub-policies (i.e., the third column of
Table VI), and can exhibit more stable behaviors for πΩ.

VI. CONCLUSION

We proposed a methodology for performing cost-aware
control based on an asymmetric architecture. Our methodol-
ogy uses a master policy to select between a large sub-policy
network and a small sub-policy network. The master policy is
trained to take inference costs into its consideration, such that
the two sub-policies are used alternately and cooperatively to
complete the task. The proposed methodology is validated in
a wide set of control environments and the quantitative and

qualitative results presented in this paper show that the pro-
posed methodology provides sufficient performances while
reducing the inference costs required. The comparison of the
proposed methodology and the baseline methods indicated
that the proposed methodology is able to deliver comparable
performance to the πL−only baseline, while requiring less
training data than the knowledge distillation baselines.
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