
Periodic Intra-Ensemble Knowledge Distillation for Reinforcement Learning

Zhang-Wei Hong1,2∗ , Prabhat Nagarajan2 , Guilherme Maeda2

1National Tsing Hua University
2Preferred Networks

williamd4112@gapp.nthu.edu.tw, {prabhat,gjmaeda}@preferred.jp

Abstract

Off-policy ensemble reinforcement learning (RL)
methods have demonstrated impressive results
across a range of RL benchmark tasks. Recent
works suggest that directly imitating experts’ poli-
cies in a supervised manner before or during the
course of training enables faster policy improvement
for an RL agent. Motivated by these recent insights,
we propose Periodic Intra-Ensemble Knowledge
Distillation (PIEKD). PIEKD is a learning frame-
work that uses an ensemble of policies to act in the
environment while periodically sharing knowledge
amongst policies in the ensemble through knowl-
edge distillation. Our experiments demonstrate that
PIEKD improves upon a state-of-the-art RL method
in sample efficiency on several challenging MuJoCo
benchmark tasks. Additionally, we perform ablation
studies to better understand PIEKD.

1 Introduction
In reinforcement learning (RL), the goal is to train a policy to
interact with an environment, such that this policy yields the
maximal expected return. While typical RL methods merely
train a single parameterized policy, ensemble methods that
share experiences amongst several function approximators [Os-
band et al., 2017, 2016] have been able to achieve superior
performance in the context of reinforcement learning (RL).
Unlike typical RL methods, Osband et al. [2017] train an en-
semble of neural network (NN) policies with distinct initial
weights (i.e. parameters of NNs) simultaneously, by sharing
experiences amongst the policies. These shared experiences
are collected by first randomly selecting a policy from the en-
semble to perform an episode. This episode of experiences is
added to a shared experience replay buffer [Mnih et al., 2015]
used to train all members of the ensemble. Learning from
shared experience allows for more efficient policy learning,
since randomly initialized policies result in extensive explo-
ration in the environment. Though reinforcement learning
from shared experiences has shown considerable improvement
over single-policy RL methods, other lines of work [Hester et

∗This work was done during an internship at Preferred Networks.

al., 2018] show that directly imitating an expert’s experiences
in a supervised manner can accelerate reinforcement learning.

Figure 1: An overview of Periodic Intra-Ensemble Knowledge Distil-
lation. We select a policy from the ensemble to act in the environment,
and use this experience to update all policies. Periodically, we distill
the best-performing policy to the rest of the ensemble.

Motivated by these results that demonstrate that direc-
tion imitation can accelerate RL, we propose Periodic Intra-
Ensemble Knowledge Distillation (PIEKD), a framework that
not only trains an ensemble of policies via common experi-
ence but also shares the knowledge of the best-performing
policy amongst the ensemble. Previous works on ensemble
RL have shown that randomly initialized policies can result
in adequate behavioral diversity [Osband et al., 2016]. Thus
PIEKD first begins by initializing each policy in the ensemble
with different weights to perform extensive exploration in the
environment. As the behaviors of these policies are diverse
in nature, at any given time during the course of training, one
policy is naturally superior to other policies. This policy is
then used to improve the quality of the other policies in the
ensemble, without having to improve solely through experi-
ence. To use the best policy to improve other policies, PIEKD
employs knowledge distillation [Hinton et al., 2015], which is
effective at transferring knowledge between neural networks.
By using knowledge distillation, we can encourage policies in
the ensemble to act in a manner similar to the best policy, en-
abling them to rapidly improve and continue optimizing for the
optimal policy from better starting points. Prior work [Rusu et
al., 2015] has shown that we can successfully distill several

ar
X

iv
:2

00
2.

00
14

9v
1

 [
cs

.L
G

]
 1

 F
eb

 2
02

0

specialized policies into a single multitask policy, demonstrat-
ing that distillation can successfully augment behaviors into
a policy without destroying existing knowledge. These re-
sults suggest that in PIEKD, despite the use of distillation
between policies’, their inherent knowledge is still preserved,
improving individual policies without destroying the diversity
amongst policies. An abstract overview of PIEKD is depicted
in Figure 1.

This paper’s primary contribution is Periodic Intra-
Ensemble Knowledge Distillation (PIEKD), a simple yet ef-
fective framework for off-policy RL that jointly trains an en-
semble of policies while periodically performing knowledge
sharing. We demonstrate empirically that PIEKD can improve
the state-of-the-art soft-actor critic (SAC) [Haarnoja et al.,
2018b] on a suite of challenging MuJoCo tasks, exhibiting su-
perior sample efficiency. We further validate the effectiveness
of distillation for knowledge sharing by comparing against
other forms of sharing knowledge.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses the related work in ensemble RL and knowl-
edge distillation. Section 3 provides a brief overview of the re-
inforcement learning formulation. Section 4 describes PIEKD.
Section 5 presents our experimental findings. Lastly, Section 6
summarizes our contributions and outlines potential avenues
for future work.

2 Related work
The works that are most related to PIEKD [Osband et al., 2016,
2017] train multiple policies via shared experience for the
same task through RL, where the shared experiences are col-
lected by all policies in the ensemble and stored in a common
buffer, as our method does. Differing from those works [Os-
band et al., 2016, 2017], we additionally periodically perform-
ing knowledge distillation between policies of the ensemble.
Other related methods aggregate multiple policies to select ac-
tions [Gimelfarb et al., 2018; Tham, 1995]. Abel et al. [2016]
sequentially train a series of policies, boosting the learning per-
formance by using the errors of a prior policy. However, rather
than perform decision aggregation or sequentially-boosted
training, we focus on improving the performance of each indi-
vidual policy via knowledge sharing amongst jointly trained
policies.

Rusu et al. [2015] train a single neural network to perform
multiple tasks by transferring multiple pretrained policies to
a single network through distillation. Hester et al. [2018]
and Nair et al. [2018] accelerate RL agents’ training progress
through human experts’ guidance. Rather than experts’ poli-
cies, Nagabandi et al. [2018], Levine and Koltun [2013] and
Zhang et al. [2016] leverage model-based controllers’ behav-
iors, facilitating training for RL agents. Additionally, Oh
et al. [2018] train RL agents to imitate past successful self-
experiences or policies. Orthogonal to the aforementioned
works, PIEKD periodically exploits the current best policy
within the ensemble, and shares its amongst the ensemble.

In other machine learning areas, Zhang et al. [2018] trains
multiple models that mutually imitate each other’s outputs on
classification tasks. Our distillation procedure is not mutual,
but flows in a single direction, from a superior teacher policy

to other student policies in the ensemble. Subsequent work
by Lan et al. [2018] trains an ensemble of models to imitate
a stronger teacher model that aggregates all of the ensemble
models’ predictions. Our method contrasts from the above
methods by periodically electing the teacher for distillation to
other ensemble members. We maintain the distinction between
ensemble members rather than aggregate them into a single
policy.

Teh et al. [2017] and Ghosh et al. [2017] distill multi-
ple task-specific policies to a central multi-task policy and
constrain the mutual divergence between each task-specific
policy and the central one. Galashov et al. [2019] learn a
task-specific policy while bounding the divergence between
this task-specific policy and some generic policy that can per-
form basic task-agnostic behaviors. Czarnecki et al. [2018]
gradually transfer the knowledge of a simple policy to a com-
plex policy during the course of joint training. Our work dif-
fers from the aforementioned works in several aspects. First,
our method periodically elects a teacher policy for sharing
knowledge rather than either constraining the mutual policy
divergence [Teh et al., 2017; Ghosh et al., 2017; Galashov
et al., 2019]. Second, our method does not rely on training
heterogeneous policies (e.g. a simple policy and a complex
policy [Czarnecki et al., 2018]), which makes our method
more generally applicable. Finally, as opposed to Teh et al.
[2017] and Ghosh et al. [2017], we consider single-task set-
tings rather than multi-task settings.

Population-based methods similarly employ multiple poli-
cies in separate copies of environments to find the optimal
policy. Evolutionary Algorithms (EA) [Salimans et al., 2017;
Gangwani and Peng, 2017; Khadka and Tumer, 2018] ran-
domly perturb the parameters of policies in the population,
eliminate underperforming policies by evaluating the policies’
performances in the environment, and produce new genera-
tions of policies from the remaining policies. Unlike EA, our
method does not rely on separate copies of environments and
eliminating existing policies from the population. Instead, our
method focuses on continuously improving the existing poli-
cies. In addition to EA, other work [Jung et al., 2020] done
concurrent to our work adds a regularization term that forces
each agent to imitate the best agent’s policy when perform-
ing policy updates at each step. Differing from PIEKD, they
train multiple agents in separate copies of the environment
in parallel. Without the reliance on multiple copies of the
environment, our method is more applicable in the cases of
expensive interaction with the environment or costly setup of
multiple environments (e.g. robot learning in the real world).

3 Background
In this section we describe the general framework of RL. RL
formalizes a sequential decision-making task as a Markov de-
cision process (MDP) [Sutton et al., 1998]. An MDP consists
of a state space S, a set of actions A, a (potentially stochas-
tic) transition function T : S × A → S, a reward function
R : S×A → R, and a discount factor γ ∈ [0, 1]. An RL agent
performs episodes of a task where the agent starts in a random
initial state s0, sampled from the initial state distribution ρs0 ,
and performs actions, which transition the agent to new states

and for which the agent receives rewards. More generally, at
timestep t, an agent in state st performs an action at, receives
a reward rt, and transitions to a new state st+1, according to
the transition function T . The discount factor γ is used to
indicate the agent’s preference for short-term rewards over
long-term rewards.

An RL agent performs actions according to its policy, a con-
ditional probability distribution πφ : S ×A 7→ [0, 1], where φ
denotes the parameters of the policy, which may be the param-
eters of a neural network. RL methods iteratively update φ via
rollouts of experience τ = {(st, at, rt, st+1)}T−1t=0 , seeking
within the parameter space Φ the optimal φ∗ that maximizes
the expected return Es∼ρs0

[∑T−1
t=0 γtrt|s0 = s

]
at each t

within an episode.

4 Method
In this section, we formally present the technical details of
our method, Periodic Intra-Ensemble Knowledge Distillation
(PIEKD). We start by providing an overview of PIEKD and
then describe its components in detail.

Algorithm 1 Periodic Intra-Ensemble Knowledge Distillation
for Off-policy Actor Critic

Require: an environment E , an off-policy actor-crtic method
ω, an ensemble size K, a parameter space Φ, a
set of parameterized policies and critics {πφk

}K−1k=0

and {Qθk}
K−1
k=0 , recent episodic performance statistics

{Rk}K−1k=0 , an episode length T , a distillation interval I ,
an experience buffer D

1:
2: i. Ensemble initialization
3: φk ∼ Uniform(Φ),∀k ∈ [0,K)
4: D ← {}
5: Rk ← {},∀k ∈ [0,K)
6: tacc ← 0
7: while not converged do
8: ii. Joint training
9: ke ∼ Uniform([0,K)) . Policy selection

10: τ ← ROLLOUT(E , πφke
)

11: D ← D ∪ τ
12: UPDATEPOLICY(πφk

, D, ω), ∀k ∈ [0,K)
13: UPDATECRITIC(Qθk , D, ω), ∀k ∈ [0,K)
14: UPDATESTAT(Rke , τ) . Update statistics
15: tacc ← tacc + T
16: iii. Intra-Ensemble Knowledge Distillation
17: if tacc ≥ I then
18: kt ← argmaxk Rk . Teacher election
19: DISTILLPOLICY(φk, φkt ,D),∀k ∈ [0,K) (Eq. 1)
20: DISTILLCRITIC(θk, θkt , D),∀k ∈ [0,K) (Eq. 2)
21: tacc ← 0
22: end if
23: end while

4.1 Overview
PIEKD maintains an ensemble of policies that perform that
collect different experiences on the same task, and then period-

ically shares knowledge amongst the policies in the ensemble.
PIEKD is separated into three phases: ensemble initializa-
tion, joint training, and intra-ensemble knowledge distillation.
First, the ensemble initialization phase randomly initializes an
ensemble of policies with different parameters to achieve be-
havioral diversity. In the joint training stage, a policy randomly
selected from the ensemble is used to execute an episode in
the environment and its experience is then stored in a shared
experience replay buffer that is used to train each policy. In the
last stage, we perform intra-ensemble knowledge distillation,
where we elect a teacher policy from the ensemble used to
guide the other policies towards better behaviors. To this end,
we distill [Hinton et al., 2015] the best-performing policy to
the others. Algorithm 1 and Figure 2 summarize our method.
In this paper, we apply PIEKD to the state-of-the-art off-policy
RL algorithm, soft actor-critic (SAC) [Haarnoja et al., 2018a].

4.2 Ensemble initialization
In the ensemble initialization phase, we randomly initialize
K policies in the ensemble. Each policy is instantiated with a
model parameterized by φk, where k stands for the policy’s
index in the ensemble. φk is initialized by sampling from the
uniform distribution over parameter space Φ which contains
all possible values of φk: φk ∼ Uniform(Φ). Despite the sim-
plicity of uniform distributions used for initialization, Osband
et al. [2016] shows that uniformly random initialization can
provide adequate behavioral diversity. In this paper, we repre-
sent each φk,∀k ∈ [0,K) as a neural network (NN), though
other parametric models can be used.

Since SAC learns both a policy and a critic function that
values states or state-action pairs from past experiences stored
in a replay buffer [Mnih et al., 2015], we create a shared replay
buffer for all policies in the ensemble and randomly initialize
a NN critic function Qθk for each policy πφk

. θk stands for
the NN’s weight for the critic Qθk .

4.3 Joint training
Each joint training phase consists of I timesteps. For each
episode, we select a policy in the ensemble to act in the envi-
ronment (hereinafter, we refer this process as “policy selec-
tion”) The policy selection strategy is a way of selecting a
policy πφke

from the ensemble to perform an episode τ in the
environment. This episode τ is stored in a shared experience
replay buffer D, and the policy’s recent episodic performance
statistic Rke is updated according to the return achieved in τ ,
where Rke is the average episodic return in the most recent M
episodes. The episodic performance statistics {Rk}Kk=0 and
D will later be used in the intra-ensemble distillation phase.
(Section 4.4). In this paper, we adopt a simple uniform random
policy selection strategy: ke ∼ Uniform([0,K)). To perform
RL updates on the agent’s policy,

After selecting a policy πφke
which performs an episode τ ,

we store this τ in D (line 11). Then, we can sample data from
D and update all policies and critics using SAC (line 12-13).
Since off-policy RL methods like SAC do not require that τ is
necessarily generated by the policy that is being updated, they
enable our policies to learn from the trajectories generated
by other policies of the ensemble. The details of the update

πϕ1 πϕ2 πϕK
…

ϕ ∼ Uniform(Φ)

Ensemble initialization

πϕ1
πϕke

πϕK
…

Environment

τ
ke ∼ Uniform([1, K])

Joint training

i. Policy
selection

ii. Collect
trajectories

Randomly initialize policies

iii. Update
policies via τ

𝒟
iv. Store experience

πϕ1
πϕkt

πϕK
…

𝒟

i. Teacher election
Rke

v. Update the performance
statistics

kt = argmax
k

Rk

minimize 𝔼s∼𝒟[D(πϕkt
(. |s), πϕ1(. |s))] minimize 𝔼s∼𝒟[D(πϕkt

(. |s), πϕK
(. |s))]

ii. Knowledge
distillation

Intra-ensemble knowledge distillation

Figure 2: An overview of of the three phases of periodic intra-ensemble knowledge distillation: ensemble initialization, joint training, and
intra-ensemble knowledge distillation.

routine for the policy and the critic are taken from the original
SAC paper [Haarnoja et al., 2018b].

4.4 Intra-ensemble knowledge distillation
The intra-ensemble knowledge distillation phase consists of
two stages: teacher election and knowledge distillation. The
teacher election stage (line 18) selects a policy from the en-
semble to serve as the teacher for other policies. In our ex-
periments, we use the natural selection criteria of the select-
ing the best-performing teacher. Specifically, we select the
policy that has the highest average recent episodic perfor-
mance recorded in the joint training phase (Sec. 4.3), namely
kt = arg maxk Rk, where kt is the index of the teacher.
Rather than use a policy’s most recent episodic performance,
we use its average return over its previous M episodes, to min-
imize the noise in our estimate of the policy’s performance.

Next, the elected teacher guides the other policies in the
ensemble towards better policies (line 19-20). This is done
through knowledge distillation [Hinton et al., 2015], which
has been shown to be effective at guiding a neural network to
behave similarly to another. To distill from the teacher to the
students (i.e., other policies in the ensemble), the teacher sam-
ples experiences from the buffer D and instructs each student
to match the teacher’s outputs on these samples. After distilla-
tion, the students acquire the teacher’s knowledge, enabling
them to correct their low-rewarding behaviors and reinforce
their high-rewarding behaviors, without forgetting their previ-
ously learned behaviors [Rusu et al., 2015; Teh et al., 2017].
Specifically, the policy distillation process is formalized as
updating each φk in the direction of

∇φk
Es∼D

[
DKL(πφkt

(.|s)||πφk
(.|s))

]
, (1)

where Kullback–Leibler divergence (DKL) is a principled way
to measure the similarity between two probability distributions
(i.e., policies). Note that when applying PIEKD to SAC, we
must additionally distill the critic function from the teacher to
the students, where each critic function is updated toward the
direction

∇θkE(s,a)∼D
[
(Qθkt

(s, a)−Qθk(s, a))2
]
, (2)

where θk and θkt denote parameters of critic functions. Qθkt

and Qθk denote the critic function corresponding to the
teacher’s policy and the student’s policy, respectively.

5 Experiments
The experiments are designed to answer the following ques-
tions: (1) Can PIEKD improve upon the data efficiency of
state-of-the-art RL? (2) Is knowledge distillation effective at
sharing knowledge? (3) Is is it necessary to choose the best-
performing agent to be the teacher? Next, we show our experi-
mental findings for each of the aforementioned questions, and
discuss their implications.

5.1 Experimental setup
Implementation. Our goal is to demonstrate how PIEKD
improves the sample efficiency of an RL algorithm. Since soft
actor-critic (SAC) [Haarnoja et al., 2018b] exhibits state-of-
the-art performance across several continuous control tasks,
we build on top of SAC. We directly use the hyperparameters
for SAC from the original paper [Haarnoja et al., 2018b] in
all of our experiments1. Unless stated otherwise, the hyper-
parameters used in for PIEKD (Algorithm 1) are I = 5000,
and K = 3. The value of I is tuned via grid search over
[1000, 2000, · · · , 10000]. We tried different ensemble size
configurations (K ∈ {2, 3, 5}) and found decided on K = 3.
For the remainder of our experiments, we term PIEKD applied
to SAC as SAC-PIEKD.
Benchmarks. We use OpenAI gym [Brockman et al.,
2016]’s MuJoCo benchmark tasks, as used in the original
SAC [Haarnoja et al., 2018b] paper. We choose most of the
tasks selected in the original paper [Haarnoja et al., 2018b]
to evaluate the performance of our method. The description
for each task can be found in the source code for OpenAI gym
[Brockman et al., 2016].
Evaluation. We adapt the evaluation approach from the
original SAC paper [Haarnoja et al., 2018b]. We train each
agent for 1 million timesteps, and run 20 evaluation episodes

1Code:https://github.com/pfnet-research/piekd

https://github.com/pfnet-research/piekd

after every 10000 timesteps (i.e., number of interactions with
the environment), where the performance is the mean of these
20 evaluation episodes. We repeat this entire process across 5
different runs, each with different random seeds. We plot the
mean value and confidence interval of mean episodic return
at each stage of training. The mean value and confidence
interval are depicted by the solid line and shaded area, respec-
tively. The confidence interval is estimated by the bootstrapped
method. At each evaluation point, we report the highest mean
episodic return amongst the agents in the ensemble. In some
curves, we additionally report the lowest mean episodic return
amongst the agents in the ensemble.

5.2 Effectiveness of PIEKD
In order to evaluate the effectiveness of intra-ensemble knowl-
edge distillation, we compare SAC-PIEKD, against two base-
lines: Vanilla-SAC and Ensemble-SAC. Vanilla-SAC denotes
the original SAC; Ensemble-SAC is the analogous variant
of Osband et al. [2016]’s method for ensemble Q-learning,
except on SAC. At its core, Osband’s method involves an
ensemble of policies that act with the environment and gen-
erate experiences. These experiences are then used to train
the entire ensemble using an off-policy RL algorithm, such
as Q-learning or off-policy actor-critic methods. Thus, our
Ensemble-SAC baseline denotes the training of an ensemble
of policies through SAC while sharing knowledge amongst in
the ensemble in a shared replay buffer. Effectively, Ensemble-
SAC is SAC-PIEKD without the intra-ensemble knowledge
distillation phase. For both Ensemble-SAC and SAC-PIEKD
we set the ensemble size K to be 3.

Our results are shown in Figure 3. Note that we also plot
the worst evaluation in the ensemble at each evaluation phase
to provide insight into the general performance of the en-
semble. In all tasks, we outperform all baselines, including
Vanilla-SAC and Ensemble-SAC, in terms of sample efficiency.
Visually we can see that throughout training, we have consis-
tently better performance at similar amounts of experience,
indicating that our method can achieve higher performance
with the same number of experiences relative to our baselines.

SAC-PIEKD usually reaches the best baseline’s convergent
performance in half of the environment interactions. We even
find that in the majority of tasks, our worst evaluation in the
ensemble outperforms the baseline methods. This demon-
strates that all policies of the ensemble are significantly im-
proving, and our method’s superior performance is not simply
a consequence of selecting the best agent in the ensemble. In
particular, SAC-PIEKD’s superiority over Ensemble-SAC high-
lights the effectiveness of supplementing shared experiences
(Ensemble-SAC) with knowledge distillation. In summary, Fig-
ure 3 demonstrates the effectiveness of PIEKD on enhancing
the data efficiency of RL algorithms.

5.3 Effectiveness of knowledge distillation for
knowledge sharing

In this section, we investigate the advantage of using knowl-
edge distillation for knowledge sharing. We consider two
alternative approaches towards sharing knowledge, other than
distillation. First, we consider sharing knowledge by simply
providing agents with additional policy updates (in lieu of

distillation updates) using the shared experiences. We also
consider directly copying the neural network as opposed to per-
forming distillation. Below, we compare these two approaches
against knowledge distillation.

Section 5.2 has shown that Ensemble-SAC, which updates
all agents’ policies through shared experiences fails to learn
as efficiently as SAC-PIEKD. However, SAC-PIEKD uses ad-
ditional gradient updates during knowledge distillation phase,
whereas Ensemble-SAC only performs joint training, and
lacks an additional knowledge distillation phase. It is unclear
whether additional policy updates in lieu of knowledge dis-
tillation can achieve the same effects. To investigate this, we
compare SAC-PIEKD with Vanilla-SAC (extra) and Ensemble-
SAC (extra), which respectively correspond to Vanilla-SAC
and Ensemble-SAC (see Section 5.2) that are trained with extra
policy update steps with the same number of updates and mini-
batch sizes that SAC-PIEKD performs. A policy update here
refers to a training step that updates the policy and value func-
tion [Haarnoja et al., 2018b], if required, by RL algorithms.
Figure (4a) compares the performance of our baselines to SAC-
PIEKD. We see that SAC-PIEKD reaches higher performance
more rapidly than the baselines. This observation shows that
knowledge distillation is more effective than policy updates
for knowledge sharing.

We additionally study whether the naive method of directly
copying parameters from the best-performing agent can also be
an effective way to share knowledge between neural networks.
We compare a variant of our method, which we denote as
SAC-PIEKD (hardcopy), against SAC-PIEKD. In SAC-PIEKD
(hardcopy), rather than perform intra-ensemble knowledge dis-
tillation, we simply copy the parameters of the teacher policy
and critic into the student policies and critics. Figure (4b)
depicts the performance of this variant. We see that SAC-
PIEKD (hardcopy) performs worse than both Ensemble-SAC
and SAC-PIEKD. Thus, it is clear that knowledge distillation
is superior to naively copying the best agent’s parameters. In
fact, it can be counterproductive to explicitly copy parameters,
as Ensemble-SAC outperforms copying without any knowl-
edge sharing. This is likely due to the loss in policy diversity
as a consequence of hardcopying, perhaps reducing to training
a single policy as in Vanilla-SAC.

5.4 Effectiveness of selecting the best-performing
agent as the teacher

During teacher election, we opted for the natural strategy of
selecting the best-performing agent. However, in order to
investigate its importance, we compared the performance of
SAC-PIEKD when we select the best policy to be the teacher
as opposed to selecting a random policy to be the teacher. This
is depicted in Figure 4c, where SAC-PIEKD (random teacher)
denotes the selection of a random policy to be the teacher
and the standard SAC-PIEKD refers to the selection of the
highest-performing policy to be the teacher. We see that using
the highest-performing teacher for distillation appears to be
slightly better than selecting a random teacher, though not
significantly. Interestingly, we see that using a random teacher
performs better than Ensemble-SAC. This result suggests that
selecting the best teacher is not necessarily of high importance,
as a random teacher yields benefits. While this warrants further

Figure 3: Performance evaluation of PIEKD. SAC-PIEKD represents the implementation of our method upon SAC; Vanilla-SAC stands for
the original SAC; Ensemble-SAC is an analogous variant of Osband et al. [2016]’s method on Vanilla-SAC (effectively SAC-PIEKD without
intra-ensemble knowledge distillation). See Section 5.2 for details. Notice that in most domains, SAC-PIEKD can reach the convergent
performance of the baselines in less than half the training time.

(a) (b) (c)

Figure 4: (a) Comparison between knowledge distillation and extra policy updates. Vanilla-SAC (extra) and Ensemble-SAC (extra) stand
for Vanilla-SAC and Ensemble-SAC variants that use extra policy updates, respectively (see Section 5.3 and Section 3 for details). (b)
Comparison between knowledge distillation and copying parameters. SAC-PIEKD (hardcopy) stands for the variant of our method which
directly copy the neural networks parameters of the best agent to the others. (c) Comparison between the selecting the best-performing
teacher vs. a random teacher. SAC-PIEKD (random teacher) refers to the variant of our SAC-PIEKD where a randomly chosen teacher is
used for knowledge distillation. This figure demonstrates that it can be more effective to select the best-performing agent as the teacher.

investigation, perhaps the diverse knowledge is being shared
through distillation, which may elicit the success we see in
SAC-PIEKD (random teacher). Another possibility is that by
bringing policies closer together, the off-policy error [Fuji-
moto et al., 2018] stemming from RL updates on a shared
replay buffer is reduced, improving performance. However,
we can conclude that selecting the highest-performing teacher,
while somewhat beneficial, is nonessential, and we leave the
investigation of these open questions for future work.

6 Conclusion
In this paper, we introduce Periodic Intra-Ensemble Knowl-
edge Distillation (PIEKD), a method that jointly trains an en-
semble of RL policies while periodically sharing information
via knowledge distillation. Our experimental results demon-
strate that PIEKD improves the data efficiency of a state-of-
the-art RL method on several standard MuJoCo tasks. Also,
we show that knowledge distillation is more effective than the
other approaches for knowledge sharing. We found that elect-
ing the best-performing policy is beneficial, but nonessential
for improving the sample efficiency of PIEKD.

PIEKD opens several avenues for future work. While we

used a simple uniform policy selection strategy, a more effi-
cient policy selection strategy may further accelerate learning.
Moreover, while our ensemble members used identical ar-
chitectures, PIEKD may benefit from using heterogeneous
ensembles, consisting of different architectures that may be
conducive to learning different skills, which can then be dis-
tilled within the ensemble. Lastly, additional investigations
into teacher elections may be lead to informative insights.

References
David Abel, Alekh Agarwal, Fernando Diaz, Akshay Krish-

namurthy, and Robert E Schapire. Exploratory gradient
boosting for reinforcement learning in complex domains.
arXiv preprint arXiv:1603.04119, 2016.

Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas
Schneider, John Schulman, Jie Tang, and Wojciech
Zaremba. Openai gym, 2016.

Wojciech Marian Czarnecki, Siddhant M Jayakumar, Max
Jaderberg, Leonard Hasenclever, Yee Whye Teh, Simon
Osindero, Nicolas Heess, and Razvan Pascanu. Mix&match-
agent curricula for reinforcement learning. arXiv preprint
arXiv:1806.01780, 2018.

Scott Fujimoto, David Meger, and Doina Precup. Off-policy
deep reinforcement learning without exploration. arXiv
preprint arXiv:1812.02900, 2018.

Alexandre Galashov, Siddhant M Jayakumar, Leonard Hasen-
clever, Dhruva Tirumala, Jonathan Schwarz, Guillaume
Desjardins, Wojciech M Czarnecki, Yee Whye Teh, Razvan
Pascanu, and Nicolas Heess. Information asymmetry in
kl-regularized rl. arXiv preprint arXiv:1905.01240, 2019.

Tanmay Gangwani and Jian Peng. Policy optimization by
genetic distillation. arXiv preprint arXiv:1711.01012, 2017.

Dibya Ghosh, Avi Singh, Aravind Rajeswaran, Vikash Ku-
mar, and Sergey Levine. Divide-and-conquer reinforcement
learning. arXiv preprint arXiv:1711.09874, 2017.

Michael Gimelfarb, Scott Sanner, and Chi-Guhn Lee. Rein-
forcement learning with multiple experts: A bayesian model
combination approach. In Advances in Neural Information
Processing Systems, pages 9528–9538, 2018.

Tuomas Haarnoja, Aurick Zhou, Sehoon Ha, Jie Tan, George
Tucker, and Sergey Levine. Learning to walk via deep
reinforcement learning. arXiv preprint arXiv:1812.11103,
2018.

Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George
Tucker, Sehoon Ha, Jie Tan, Vikash Kumar, Henry Zhu,
Abhishek Gupta, Pieter Abbeel, et al. Soft actor-critic algo-
rithms and applications. arXiv preprint arXiv:1812.05905,
2018.

Todd Hester, Matej Vecerik, Olivier Pietquin, Marc Lanctot,
Tom Schaul, Bilal Piot, Dan Horgan, John Quan, Andrew
Sendonaris, Ian Osband, et al. Deep q-learning from demon-
strations. In Thirty-Second AAAI Conference on Artificial
Intelligence, 2018.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-
ing the knowledge in a neural network. arXiv preprint
arXiv:1503.02531, 2015.

Whiyoung Jung, Giseung Park, and Youngchul Sung.
Population-guided parallel policy search for reinforcement
learning. In International Conference on Learning Repre-
sentations, 2020.

Shauharda Khadka and Kagan Tumer. Evolution-guided policy
gradient in reinforcement learning. In Advances in Neural
Information Processing Systems, pages 1188–1200, 2018.

Xu Lan, Xiatian Zhu, and Shaogang Gong. Knowledge dis-
tillation by on-the-fly native ensemble. In Proceedings of
the 32nd International Conference on Neural Information
Processing Systems, pages 7528–7538. Curran Associates
Inc., 2018.

Sergey Levine and Vladlen Koltun. Guided policy search. In
International Conference on Machine Learning, pages 1–9,
2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A
Rusu, Joel Veness, Marc G Bellemare, Alex Graves, Martin
Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning.
Nature, 518(7540):529, 2015.

Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and
Sergey Levine. Neural network dynamics for model-based
deep reinforcement learning with model-free fine-tuning.
In 2018 IEEE International Conference on Robotics and
Automation (ICRA), pages 7559–7566. IEEE, 2018.

Ashvin Nair, Bob McGrew, Marcin Andrychowicz, Wojciech
Zaremba, and Pieter Abbeel. Overcoming exploration in re-
inforcement learning with demonstrations. In 2018 IEEE In-
ternational Conference on Robotics and Automation (ICRA),
pages 6292–6299. IEEE, 2018.

Junhyuk Oh, Yijie Guo, Satinder Singh, and Honglak Lee.
Self-imitation learning. arXiv preprint arXiv:1806.05635,
2018.

Ian Osband, Charles Blundell, Alexander Pritzel, and Ben-
jamin Van Roy. Deep exploration via bootstrapped dqn. In
Advances in neural information processing systems, pages
4026–4034, 2016.

Ian Osband, Benjamin Van Roy, Daniel Russo, and Zheng
Wen. Deep exploration via randomized value functions.
arXiv preprint arXiv:1703.07608, 2017.

Andrei A Rusu, Sergio Gomez Colmenarejo, Caglar Gulcehre,
Guillaume Desjardins, James Kirkpatrick, Razvan Pascanu,
Volodymyr Mnih, Koray Kavukcuoglu, and Raia Hadsell.
Policy distillation. arXiv preprint arXiv:1511.06295, 2015.

Tim Salimans, Jonathan Ho, Xi Chen, Szymon Sidor, and Ilya
Sutskever. Evolution strategies as a scalable alternative to
reinforcement learning. arXiv preprint arXiv:1703.03864,
2017.

Richard S Sutton, Andrew G Barto, et al. Introduction to
reinforcement learning, volume 135. MIT press Cambridge,
1998.

Yee Teh, Victor Bapst, Wojciech M Czarnecki, John Quan,
James Kirkpatrick, Raia Hadsell, Nicolas Heess, and Raz-
van Pascanu. Distral: Robust multitask reinforcement learn-
ing. In Advances in Neural Information Processing Systems,
pages 4496–4506, 2017.

Chen K Tham. Reinforcement learning of multiple tasks using
a hierarchical cmac architecture. Robotics and Autonomous
Systems, 15(4):247–274, 1995.

Tianhao Zhang, Gregory Kahn, Sergey Levine, and Pieter
Abbeel. Learning deep control policies for autonomous
aerial vehicles with mpc-guided policy search. In 2016
IEEE international conference on robotics and automation
(ICRA), pages 528–535. IEEE, 2016.

Ying Zhang, Tao Xiang, Timothy M Hospedales, and Huchuan
Lu. Deep mutual learning. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 4320–4328, 2018.

	1 Introduction
	2 Related work
	3 Background
	4 Method
	4.1 Overview
	4.2 Ensemble initialization
	4.3 Joint training
	4.4 Intra-ensemble knowledge distillation

	5 Experiments
	5.1 Experimental setup
	5.2 Effectiveness of PIEKD
	5.3 Effectiveness of knowledge distillation for knowledge sharing
	5.4 Effectiveness of selecting the best-performing agent as the teacher

	6 Conclusion

